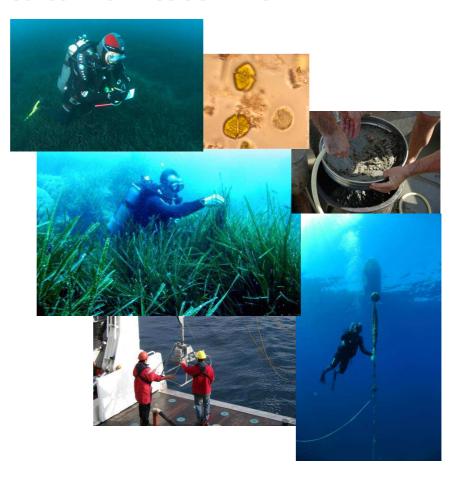


Direction des Opérations


Laboratoire Environnement Ressources Provence Azur Corse Laboratoire Environnement Ressources Languedoc-Roussillon

Coordination : Bruno Andral, Valérie Derolez

Décembre 2007 RST. DOP/LER-PAC / 07-28

Directive Cadre Eau Mise en œuvre du Contrôle de surveillance Résultats de la campagne 2006

District RHÔNE et CÔTIERS MEDITERRANEENS

Directive Cadre Eau Mise en œuvre du Contrôle de surveillance Résultats de la campagne 2006

District RHÔNE et CÔTIERS MEDITERRANEENS

Agence de l'Eau Rhône Méditerranée et Corse : Boissery P.

Creocean: Dutrieux E., Schvartz T., Thorins S.

Ifremer: Andral B., Belin C., Bouchoucha M., Derolez V.,

Dugelay F., James A., Laugier T., L'Hostis D., Messiaen G., Orsoni V., Sartoretto S., Sauzade D.,

Tomasino C.

Université de Liège : Gobert S.

Partenaires associés à l'élaboration de la campagne DCE 2006 :

Fiche documentaire

Numéro d'identification du rapport :	date de publication : Déc. 2007
Diffusion : libre: ☑ restreinte: □ interdite: □	nombre de pages: 193
	bibliographie: Oui
Validé par : Didier Sauzade	illustration(s): Oui
Adresse électronique :	langue du rapport : F
Titre : Mise en œuvre du contrôle de surveillance : cam	pagne DCE 2006
Contrat $n^{\circ 2006-1635}$ Rapport intermédiaire \square	Rapport définitif ☑
Encadrement(s): Andral B., Derolez V.	
Destinataire : Agence de l'Eau Rhône Méditerranée et Corse	
Résumé Les programmes de surveillance liés à la mise en Ministère de l'Ecologie et de l'Aménagement durable (MI hydrographique, les Agences de l'eau prennent en charge la	EDAD). Avec l'Etat, dans chaque bassin
Sur la façade méditerranéenne, Ifremer a assuré pour le co sur l'Eau la maîtrise d'ouvrage de la première camp coordonnant l'ensemble de l'acquisition des données et d nombreux partenaires : Universités, bureaux d'études, st l'Etat.	pagne du contrôle de surveillance, en e leur synthèse en collaboration avec de
La mobilisation des différents acteurs autour d'un objec pluridisciplinarité et à la complexité des aspects logistiques	•
Les résultats de cette première campagne du contrôle de d'avoir une bonne vision d'ensemble de la qualité des e confortent les évaluations faites « à dire d'expert » lors informations nouvelles concernant plus particulièrement substrat meuble.	eaux littorales à l'échelle du district. Ils de l'état des lieux du district avec des
En eaux côtières, les eaux sont globalement de bonn essentiellement à la chimie sur des zones sujettes à des act transition, essentiellement lagunaires, il existe une plus gra paramètres déclassant relevant plutôt de la biologie, mais s	tivités nautiques importantes. En eau de ande hétérogénéité des résultats avec des
Mots-clés : surveillance, bioaccumulation, phytoplancton, macrophytes.	benthos de substrat meuble, posidonie,

sommaire

1. INTRODUCTION	9
2. PREPARATION DE LA CAMPAGNE DCE	11
2.1. Objectifs de la DCE	11
2.2. MISE EN ŒUVRE DE LA DCE DANS LE DISTRICT	
2.3. PROGRAMME DE SURVEILLANCE	
2.3.1. Indicateurs de qualité retenus	14
2.3.2. Stratégie d'échantillonnage	
2.3.3. Opérations de terrain	
2.4. CRITERES DE CLASSIFICATION DES MASSES D'EAU	
2.4.1. Le bon état	25
2.4.2. Caractérisation de la qualité chimique	26
2.4.3. Caractérisation de la qualité biologique	26
3. METHODOLOGIE	29
3.1. CHIMIE (SUBSTANCES HYDROPHOBES ET INTERMEDIAIRES)	29
3.1.1. Protocole	
3.1.2. Paramètres analysés	
3.1.3. Méthodes de traitement et d'interprétation	
3.2. Hydrologie	
3.2.1. Localisation des sites de prélèvements	
3.2.2. Protocole de prélèvement	
3.2.3. Analyse des données	
3.2.4. Classification	
3.3. PHYTOPLANCTON	
3.3.1. Localisation des sites de prélèvements	
3.3.2. Protocole de prélèvement	
3.3.3. Analyse des données	
3.3.4. Classification	42
3.4. Posidonie	45
3.4.1. Localisation des sites de prélèvements	45
3.4.2. Protocole de prélèvement	46
3.4.3. Classification	50
3.5. MACROPHYTES	
3.5.1. Localisation des sites de prélèvements	
3.5.2. Protocoles de prélèvement	
3.5.3. Analyse des données	
3.5.4. Classification	
3.6. MACROFAUNE BENTHIQUE DE SUBSTRAT MEUBLE	
3.6.1. Localisation des sites de prélèvements	
3.6.2. Protocole de prélèvement	
3.6.3. Analyse des données	
3.6.4. Classification	
4. RESULTATS	
4.1. Evaluation de la qualite chimique	
4.2. CONTRIBUTION A L'EVALUATION DE LA QUALITE ECOLOGIQUE: EAUX COTIERES	
4.2.1. Hydrologie	
4.2.2. Phytoplancton	
4.2.3. Posidonie	
4.2.4. Macrofaune benthique de substrat meuble	
4.3. CONTRIBUTION A L'EVALUATION DE LA QUALITE ECOLOGIQUE : EAUX DE TRANSITION	
4.3.1. Hydrologie	
4.3.2. Phytoplancton	
4.3.3. Macrophytes	
434 Macrofaune henthique de substrat mouble	QΩ

5. SYNTHESE GENERALE	
7. ANNEXES	
7.1. PARAMETRES ET FREQUENCE DE SUIVI	
7.2. TYPOLOGIE DES MASSES D'EAU COTIERES	
7.3. LOCALISATION DES STATIONS DE SURVEILLANCE	
7.4. CHIMIE	
7.4.1. Méthodes analytiques	
7.4.2. Résultats	
7.5. HYDROLOGIE	
7.5.1. Définition des paramètres hydrologiques	
7.5.2. <i>Percentile 10</i>	
7.5.3. Oxygène dissous – Eaux côtières	
7.5.4. Hydrologie - Eaux de transition	
7.6. PHYTOPLANCTON	131
7.6.1. Biomasse	
7.6.2. Abondance	
7.6.3. Espèces nuisibles	
7.6.4. Composition	
7.7. POSIDONIE	141
7.8. MACROPHYTES	143
7.8.1. Espèces climax	
7.8.2. Etang de THAU	144
7.8.3. Complexe PALAVASIEN	146
7.8.4. Etang Salse-Leucate	149
7.8.5. Etang de La Palme	
7.8.6. Etang Bages - Sigean	154
7.8.7. Etang de l'Or	160
7.8.8. Etang de Vaccarès	164
7.8.9. Etang de Berre	165
7.9. BENTHOS	167
7.9.1. Localisation des sites en eaux côtières	167
7.9.2. Analyse des sédiments en eaux côtières	168
7.9.3. Description Indices biologiques pour le benthos	172
7.9.4. Résultats Eaux de Transition	177
7.10. CARTOGRAPHIE	179
7.10.1. Descripteur CHIMIE	180
7.10.2. Descripteur PHYTOPLANCTON	181
7.10.3. Descripteur POSIDONIE	182
7.10.4. Descripteur MACROPHYTES	
7.10.5. Descripteur BENTHOS	
GLOSSAIRE	
RIRLIOGRAPHIE	187

1. Introduction

La Directive 2000/60/CE du Parlement Européen et du Conseil du 23 octobre 2000 (DCE) établit un nouveau cadre pour une politique communautaire dans le domaine de l'eau et la gestion des écosystèmes côtiers.

L'objectif de la Directive est l'atteinte d'un bon état écologique et chimique des masses d'eau en 2015, pour les eaux côtières et les eaux de transition (e. g. estuaires, étangs littoraux saumâtres,...).

Conformément à l'article 8 de la DCE, le programme de surveillance des eaux côtières et des eaux de transition est établi de manière à dresser un tableau cohérent et complet de l'état des eaux au sein du bassin. Il est défini dans le cadre de l'élaboration des Schémas Directeurs des Données sur l'Eau (SDDE) prévus par la circulaire du 26 mars 2002.

Les programmes de surveillance liés à la mise en œuvre de la DCE sont coordonnés par le Ministère de l'Ecologie et de l'Aménagement durable (MEDAD) et dans chaque bassin hydrographique ce sont les Agences de l'eau qui, avec l'Etat, prennent en charge l'application, la mise en œuvre de ces réseaux.

Sur la façade méditerranéenne, Ifremer a assuré pour le compte du SDDE la maîtrise d'ouvrage de la première campagne du contrôle de surveillance, en coordonnant l'ensemble de l'acquisition des données et de leur synthèse en collaboration avec de nombreux partenaires : Universités, bureaux d'études, structures locales de gestion et services de l'Etat.

L'objet du présent document est de présenter les résultats de cette campagne réalisée en 2006 dans les districts Rhône et côtiers méditerranéens et Corse.

Les résultats sont reportés dans deux documents distincts :

- Résultats de la campagne DCE 2006 du District « Rhône et côtiers méditerranéens »
- Résultats de la campagne DCE 2006 du District « Corse »

2. Préparation de la campagne DCE

2.1. Objectifs de la DCE

Les objectifs du programme de surveillance mis en œuvre dans le cadre de la DCE sont de permettre dès 2006 l'appréciation de l'état écologique et chimique des masses d'eau côtières et de transition, de chaque district hydrographique, et permettre leur classification selon des classes de qualité.

Sur la base de la caractérisation des masses d'eau du district hydrographique Rhône et côtiers méditerranéens et d'un état des lieux effectué conformément à l'article 5 et l'annexe II de la DCE, le programme de surveillance à mettre en œuvre pour chaque période couverte par un plan de gestion (unité temporelle de base de la DCE d'une durée de 6 ans) doit comprendre :

Un réseau de suivi constitué :

- du contrôle de surveillance réalisé dans une sélection de masses d'eau représentatives de la typologie des bassins, pour permettre de présenter à l'Europe un rapport sur l'état des eaux de chaque district hydrographique ;
- du <u>contrôle opérationnel</u> réalisé dans toutes les masses d'eau risquant de ne pas atteindre les objectifs de qualité écologique, pour y suivre l'incidence des pressions exercées par les activités humaines ;
- du <u>contrôle d'enquête</u> mis en oeuvre pour rechercher les causes d'une mauvaise qualité en l'absence de réseau opérationnel;
- de <u>contrôles additionnels</u> qui vont s'attacher à vérifier les pressions qui affectent des zones dites protégées, parce que nécessitant une protection spéciale dans le cadre d'une législation communautaire spécifique visant la protection des eaux de surface ou la conservation des habitats et des espèces directement dépendants de l'eau (eaux de baignade et zones conchylicoles par exemple).
- Des sites de référence, pour mesurer les conditions de références biologiques de chaque type de masse d'eau
- Des sites d'intercalibration, pour comparer entre Etats membres les valeurs mesurées aux bornes du bon état écologique.

La Circulaire MEDAD DCE 2007/20 constitue le document de cadrage pour la mise en œuvre de ce programme de surveillance pour les eaux littorales (eaux côtières et de transition) en ce qui concerne les façades Manche, Atlantique et Méditerranée.

Au titre du réseau de suivi, seul le réseau de contrôle de surveillance fait l'objet du présent rapport.

2.2. Mise en œuvre de la DCE dans le district

La surveillance de la qualité des eaux littorales est depuis le début des années 1990 un sujet mobilisateur pour le bassin Rhône Méditerranéen & Corse. Cette préoccupation traduite dans le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) s'est concrétisée par un effort important au cours des dernières années.

Parmi ces avancées, il est important de souligner les travaux relatifs à la mise en œuvre du Réseau Littoral Méditerranéen (RLM). Le RLM et les coopérations qu'il a générées ont permis de développer un bon nombre de méthodes, d'outils, de réseaux ou de concepts liés à la surveillance de l'espace littoral méditerranéen¹. La mise en œuvre des réseaux DCE s'inscrit dans la continuité de ses travaux.

Au-delà de ces aspects techniques, les coopérations institutionnelles entre les acteurs littoraux, l'Etat & ses établissements publics, la communauté scientifique et les gestionnaires de milieux aquatiques ont préfiguré avant l'heure l'organisation souhaitée par la DCE.

Fort de cette expérience, les principes de base qui ont permis de définir la première campagne du contrôle de surveillance ont été les suivants :

- s'appuyer sur l'organisation et la dynamique existantes (coopération Agence de l'Eau Ifremer) et fédérer autour la communauté scientifique pour faire émerger une « dynamique de la surveillance DCE »,
- définir le contrôle de surveillance en co-construction technique avec des experts associés.
- bâtir la surveillance DCE sur les réseaux actuels en les faisant évoluer si besoin,
- s'appuyer sur le concept « des champs proches, moyens et lointain » (cf ci-dessous) pour définir la stratégie spatiale,
- organiser au mieux la campagne de surveillance comme une campagne pluridisciplinaire s'appuyant sur la logistique du réseau Réseau Intégrateur Biologique (RINBIO) et ainsi permettre une optimisation des coûts liés à la logistique,
- acquérir rapidement les données et des informations pour respecter le calendrier, pour capitaliser de la connaissance avant le début du plan de gestion (2009) et pour acquérir de l'expérience sur la réalisation d'une campagne pluridisciplinaire,

http://sierm.eaurmc.fr/rlm/index.php

- admettre que la première campagne comporte des manques (molécules hydrophiles, macroalgues, poissons, données satellitaires, modélisation,...) mais engager simultanément les travaux ad'hoc pour les combler et préparer la seconde campagne prévue en 2009,
- assurer la bancarisation des données, la traçabilité de l'opération et le porter à connaissance.

Les bases du programme de surveillance ont été posées à l'échelle du district, à l'aide d'un processus itératif porté par un groupe de travail « eaux côtières » et un groupe de travail « eaux de transition », s'appuyant sur les travaux du groupe national DCE « surveillance » piloté par Ifremer, à la demande du MEDAD¹.

En premier lieu, le principe de base adopté à l'échelle des districts était d'instaurer les contrôles de surveillance et opérationnels dans des secteurs bien définis par rapport aux rejets du bassin versant qu'ils soient naturels ou anthropiques.

Ces contrôles s'appuient sur les notions de champ définis au niveau du bassin, dans le cadre du RLM (Figure 1) :

- Champ proche : quelques centaines de mètres de la cote, zone directement influencée par un apport ;
- Champ moyen: zone de dilution des divers apports d'un secteur;
- Champ lointain: zone du large ou hors de l'influence directe des apports d'un secteur.

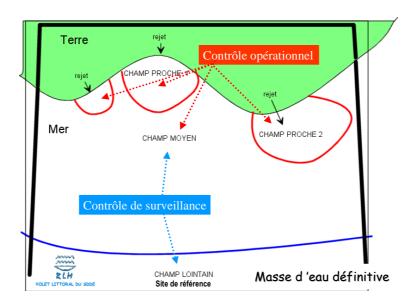


Figure 1 : Détermination des points de contrôles, dans les différents champs

_

¹ Rapport Convention Agence de l'eau Rhône Méditerranée Corse n°802-2004-033

2.3. Programme de surveillance

2.3.1. Indicateurs de qualité retenus

Conformément à la Circulaire MEDAD 2007/20 plusieurs indicateurs de qualité ont été suivis pour évaluer la qualité des masses d'eau côtières et de transition (annexe 7.1) :

Des descripteurs chimiques:

- Les substances prioritaires (métaux, contaminants organiques hydrophobes et hydrophiles) retenues dans les annexes IX et X de la DCE
- Les paramètres généraux de la colonne d'eau, tels que température, turbidité, salinité, oxygène dissous et nutriments.

> Des descripteurs biologiques :

- **■** Le phytoplancton,
- La Posidonie pour les angiospermes en eaux côtières (E.C.),
- Les macrophytes : macro-algues et angiospermes des eaux de transition (E.T.),
- La macrofaune benthique de substrat meuble,
- L'ichtyofaune, pour les eaux de transition uniquement,
- Les macroalgues pour les eaux côtières.

Des paramètres d'appui (tels que l'hydrologie, la granulométrie ou la teneur en matière organique dans les sédiments ...) sont analysés en parallèle. L'hydrologie intervient de manière transversale dans l'aide à l'interprétation des résultats de plusieurs indicateurs de qualité et fait donc l'objet d'un chapitre à part entière.

2.3.1.1. Descripteurs chimiques

L'état chimique, qui ne peut prendre que deux valeurs, bon ou mauvais, doit être évalué par rapport à des valeurs seuils (les Normes de Qualité Environnementale ou NQE) fixées pour chaque substance prioritaire retenue.

La liste des substances prioritaires dans le domaine de l'eau du 20 novembre 2001, prévue à l'annexe X de la Directive, a été arrêtée par décision du parlement européen et du conseil (décision 2455/2001/CE). Elle comprend une liste de 33 substances et groupes de substances, en complément de celles mentionnées à l'annexe IX de la Directive (9, dont 1 commune à la liste des 33), d'où un total de 41 substances à prendre en compte dans le programme de surveillance.

Dans les districts «Rhône et Côtiers Méditerranéens et Corse », la stratégie d'échantillonnage concernant ces 41 substances a bénéficié de l'expérience du Réseau National d'Observation (RNO) mis en œuvre par l'Ifremer à l'échelle nationale, pour le compte du MEDAD, et de celle du Réseau Intégrateur Biologique (RINBIO) mis en œuvre par l'Ifremer à l'échelle de la façade méditerranéenne, en partenariat avec l'Agence de l'Eau Rhône Méditerranée et Corse.

Cette expérience conjointe a permis l'élaboration de recommandations techniques et opérationnelles adaptées aux caractéristiques du milieu marin littoral méditerranéen basées sur deux principes fondamentaux :

- Pour les substances hydrophobes et intermédiaires, la mesure des niveaux de concentration soit dans les sédiments fins superficiels, soitu dans les mollusques bivalves. La mesure directe dans l'eau pose des problèmes de représentativité de prélèvements ponctuels dans un milieu dynamique et n'est proposée que pour les substances hydrophiles sur de l'eau filtrée. La possibilité d'acquérir de la donnée à l'aide de capteurs passifs comme méthode de substitution est par ailleurs à l'étude.
- Le suivi de l'évolution des concentrations dans les mollusques (pour les contaminants au comportement hydrophobe ou intermédiaire) dans le cadre du contrôle opérationnel, de manière à pouvoir apprécier les tendances temporelles.

La campagne DCE 2006 s'est articulée sur le plan d'échantillonnage du réseau RINBIO pour pouvoir analyser, en complément des paramètres du RINBIO, les 29 substances hydrophobes et intermédiaires de la liste des 41 substances. Des prélèvements de sédiment ont également été réalisés pour compléter le plan d'échantillonnage du RNO sédiment.

12 substances non accumulables seront suivies dans l'eau au cours d'un programme à définir d'ici la prochaine campagne DCE du contrôle de surveillance compte tenu de la difficulté du prélèvement et de l'analyse inhérente à ces molécules.

2.3.1.2. Descripteurs biologiques

Phytoplancton

Le Phytoplancton regroupe les algues unicellulaires vivant en suspension dans la masse d'eau (Figure 2 et 3). C'est un des premiers maillons de la chaîne alimentaire dans l'écosystème marin.



Figure 2: Dinophysis caudata (Ifremer, 2004)

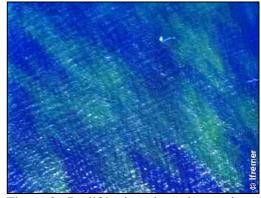


Figure 3 : Prolifération phytoplanctonique en mer vue du ciel (Ifremer, 2007)

Les proliférations phytoplanctoniques ou blooms sont en relation étroite avec les apports d'azote et de phosphore. Les niveaux de proliférations sont formalisés au travers de comptages, pouvant mettre en évidence la présence d'espèces toxiques. Les chlorophylles, en particulier la chlorophylle-a, que l'on retrouve dans la majeure partie des cellules phytoplanctoniques, constituent un indicateur de biomasse. Sont associés des indicateurs d'abondance et de composition basés sur l'apparition de blooms et d'espèces toxiques, complétés par des paramètres d'appui tels que l'hydrologie.

❖ Posidonie (E.C.)

Dans les eaux côtières méditerranéennes, l'herbier de Posidonie a été retenu pour renseigner l'indicateur angiosperme. *Posidonia oceanica* (L.) Delile est une espèce endémique à la Méditerranée. Les herbiers constitués par cette angiosperme, occupent de vastes surfaces et jouent un rôle écologique, géologique et économique majeur. A ce titre, l'herbier de Posidonie est souvent considéré comme l'écosystème pivot des espaces littoraux méditerranéens : lieu de frayères, pôle de biodiversité, production d'oxygène, protection contre l'érosion du littoral et production primaire élevée (Figure 4). Les herbiers de Posidonie sont très largement distribués sur les fonds littoraux du bassin méditerranéen, de la surface jusqu'à 30 ou 40 m de profondeur. Toutefois, *Posidonia oceanica* ne supporte pas la dessalure et les matières en suspension. Elle est donc absente des zones littorales placées sous l'influence des grands estuaires, tel le delta du Rhône. Les herbiers de Posidonie constituent de bons indicateurs biologiques globaux de la qualité du milieu marin.

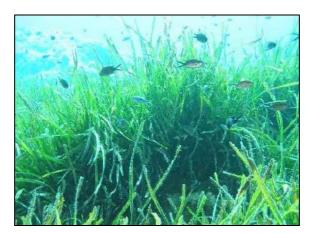


Figure 4 : Un herbier de *Posidonia oceanica* abrite une faune et flore très diversifiée (Ifremer, 2005)

L'étude de l'herbier à *Posidonia oceanica* basé sur des indicateurs comme la densité, la surface foliaire, le type de limite inférieure est associée à une analyse des paramètres hydro-morphologiques, qui interviennent comme « paramètres d'appui » pour l'interprétation des résultats.

❖ Macrophytes (E.T.)

Dans les lagunes côtières, les peuplements macrophytiques sont présents essentiellement sur substrat meuble, les espèces fixées sur substrat dur étant très rares. Les macrophytes de substrat meuble, peuvent être séparés en deux groupes d'espèces, fondés sur leur forme de vie et sur la qualité du milieu associée :

- Les phanérogames marines (Figure 5) et algues polluo-sensibles, peuplements souvent fixés, sont considérés comme des espèces des peuplements de référence,
- Les algues opportunistes, sous forme de peuplement dérivant.

Les phanérogames, comme les zostères, les cymodocées, les ruppia, représentant les espèces de l'équilibre maximal d'une lagune sont qualifiés d'**espèces climax**, ce sont les espèces formant des peuplements de référence pour étudier la qualité du milieu.

Figure 5 : Les herbiers de Zostères sont des phanérogames marines (Ifremer, 2005).

L'évolution vers des écosystèmes dégradés se traduit par une succession de communautés de macrophytes, où les espèces de référence sont remplacées par des espèces opportunistes ou dérivantes, caractéristiques d'une perte de la qualité de l'écosystème. La disparition des espèces de référence peut témoigner d'une eutrophisation des eaux (enrichissement en éléments nutritifs), donc d'une pollution du milieu, et constitue donc un indicateur d'un mauvais état de la masse d'eau.

La disparition des espèces de référence, en particulier des herbiers de phanérogames, peut également indiquer d'autres pressions anthropiques locales (pêche à pied, plaisance...) et des changements de conditions du milieu.

Macrofaune benthique de substrat meuble

La macrofaune benthique de substrat meuble, bien que connue pour être largement influencée par des facteurs physiques tels que l'hydrodynamisme et la profondeur de la zone, est également largement utilisée en tant qu'indicateur de la qualité du milieu.

Figure 6 : *Glycera alba* (Polychète annelidé) et *Amphiura chiaiei* (Echinoderme-Ophiure) identifiés au microscope (source : Creocean, 2007)

Par la faible mobilité et sensibilité de certaines espèces, la composition des communautés benthiques de substrats meubles fournit des informations aussi bien sur la situation présente que sur les événements passés (pollution par exemple) ayant affecté la zone à plus ou moins long terme (de quelques semaines à quelques années). Plusieurs études ont ainsi mis en évidence des réponses relativement rapides de cette faune à différentes perturbations qu'elles soient anthropiques ou naturelles. En milieu marin, différents indices biotiques basés sur la polluo-sensibilité des espèces indicatrices sont proposés et largement utilisés. En milieu lagunaire, les particularités de ce type de milieu (faible hydrologie, faible profondeur, salinité, milieu plus ou moins fermé etc.) font qu'ils correspondent « naturellement » à des stades de dégradation. L'utilisation des indices et paramètres des eaux côtières doit donc être adaptée.

L'abondance et la diversité de la macrofaune benthique de substrat meuble permettent d'élaborer des indices représentatifs de la qualité du milieu. Ces derniers sont associés à une analyse de la granulométrie et des teneurs en matière organique du sédiment qui viennent en tant que paramètres d'appui à l'interprétation des résultats.

Ichtyofaune

Une étude sur les peuplements piscicoles des eaux de transition méditerranéennes est portée par le Cemagref. Cette étude, menée de 2006 à 2007, permettra d'aboutir à la définition d'un indicateur « poisson ». Cet indicateur sera établi à partir de la composition et l'abondance spécifique des échantillons prélevés (effectifs et poids totaux par espèce).

Cette étude sera finalisée en 2008 et n'est, par conséquent, pas rapporté dans le présent document.

Macroalgues

Une étude sur les macroalgues des eaux côtières méditerranéennes, élaborée par l'Université de Nice, est actuellement en cours. Elle permettra de définir les outils de surveillance de cet indicateur et sera opérationnelle en 2009.

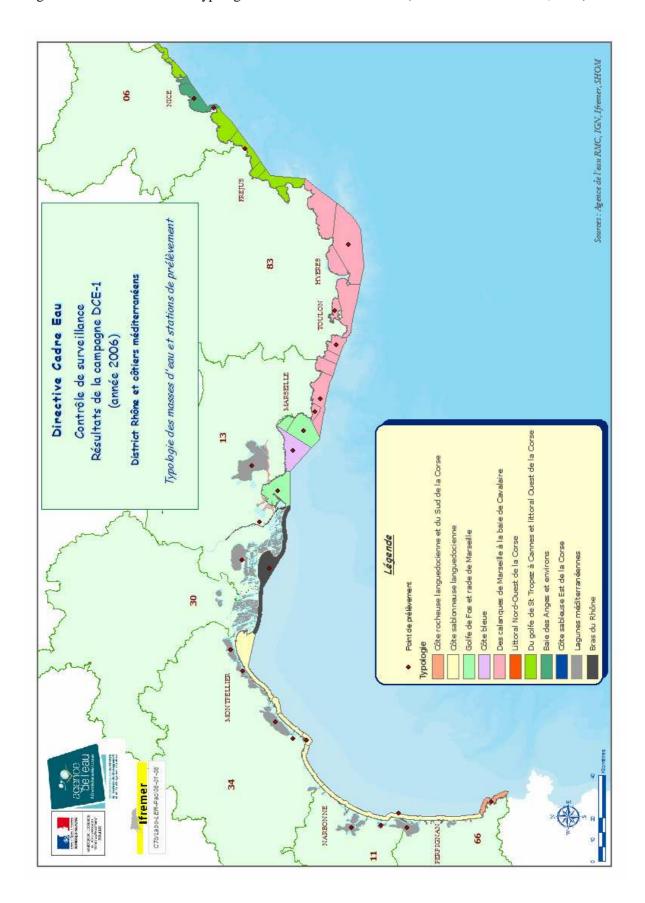
2.3.2. Stratégie d'échantillonnage

La DCE n'impose pas de surveiller l'ensemble des masses d'eau de chaque district. Elle doit être orientée sur une sélection de masses d'eau représentatives du district pour leur typologie des masses d'eau et les pressions auxquelles elles sont soumises. Afin de ne pas sélectionner systématiquement des masses d'eau sans risque ou inversement, il est recommandé de respecter les proportions entre les différents niveaux de risque déterminés lors de l'état des lieux.

2.3.2.1. Typologie des masses d'eau

Au niveau du district, trois types de masses d'eau côtières ont été identifiés :

- Type 1 pour les sites côtiers fortement influencés par des apports d'eau douce : les masses d'eau proche du Rhône
- Type 2A pour les sites côtiers non directement affectés par des apports en eaux douces, soit:
 - les masses d'eau situées à l'ouest du Rhône correspondant à la typologie « côte sableuse languedocienne »
 - et la « Côte bleue » correspondant à une typologie particulière.
- Type 3W pour les sites côtiers rocheux non affectés par des apports en eau douce, soit:
 - les masses d'eau situées à l'est de la « Côte bleue »,
 - la masse d'eau à la limite de la frontière espagnole dont la typologie est beaucoup plus proche de la côte catalane que des côtes sableuses du Languedoc Roussillon.


Après ce prédécoupage, 7 types de masses d'eau côtières naturelles ont été identifiés à l'échelle du district (Figure 7) comme entités homogènes, basé sur leur faciès sédimentaire, leur profondeur et la courantologie¹ (cf. annexe 7.2).

Pour les masses d'eau de transition, trois types ont été retenus : le delta du Rhône (panache), les bras du Rhône et les lagunes de plus de 50 ha. Une typologie précise des lagunes n'existe pas à l'heure actuelle. Une étude sur la classification des types de lagunes est actuellement en cours à l'Agence de l'eau RM&C, pour y remédier. Les lagunes sont donc, à ce jour, toutes de type « lagune méditerranéenne » T10.

Conformément à la méthodologie arrêtée au niveau du bassin, l'état des lieux du district a abouti à un découpage plus fin des masses d'eau naturelles, tenant compte des pressions exercées sur chacune d'elle. Le découpage final a permis d'identifier un nombre de 33 masses d'eau côtières et 36 masses d'eau de transition.

¹ SDAGE-DCE, 2003

Figure 7. Carte des différentes typologies des masses d'eau côtières (Guillaumont et Gauthier, 2005)

2.3.2.2. Sélection des masses d'eau et points de suivi

Le contrôle de surveillance porte sur des masses d'eau caractéristiques de la typologie, du risque de non atteinte du bon état écologique (NABE) et des pressions. A ce titre, 14 masses d'eau côtières et 10 masses d'eau de transition ont été retenues à l'échelle du district.

Au niveau du plan d'échantillonnage :

Le **site** définit la masse d'eau (exemple : site ou masse d'eau « La côte bleue ») La **station** correspond à la localisation dans la masse d'eau (station « Carry ») Le **point** correspond au type de prélèvement effectué (point « benthos »)

Le Tableau 1 reprend pour chaque masse d'eau les points de suivi retenus par paramètre. La masse d'eau de transition « Estuaire du Rhône » a été traitée avec les masses d'eau côtières.

La localisation des stations de surveillance (coordonnées GPS) est fournie en annexe (7.3).

Tableau 1 : Liste des sites des masses d'eau proposées au titre du contrôle de surveillance en fonction de leur typologie et des points de suivi de l'état chimique et biologique.

			Chi	Chimie Biologie		ogie		
Code EU	- Type	Nom de la masse d'eau	Chimie	Hydrologie	Phytoplancton	Posidonie	Macrophytes	Benthos
FR DC 1	3W	« Frontière espagnole - Racou plage »	2	1	1	1	-	3
FR DC 2a	2A	« de Racou plage à l'embouchure de l'Aude »	2	1	1	-	-	2
FR DC 2c	2A	« Cap d'Agde »	1	1	1	1	-	2
FR DC 3	1	« Estuaire du Rhône »	2	1	2	-	-	3
FR DC 4	2A	« Golfe de Fos »	1	1	1	-	-	2
FR DC 5	2A	« Cote bleue »	1	1	1	2	-	1
FR DC 6b	3W	« Pointe d'Endoume- Cap Croisette et Frioul »	1	1	1	1	-	1
FR DC 7a	3W	« Cortiou »	1	-	-	1	-	2
FR DC 7b	3W	« De Cap Croisette au Bec de l'Aigle »	1	1	1	1	-	1
FR DC 7e	3W	« Ilot Pierre Plane – Pointe de Gaou »	1	1	1	1	•	1
FR DC 7h	3W	« Iles du Soleil »	1	1	1	1	ı	3
FR DC 8d	3W	« Ouest Fréjus – Pointe de la Galère »	1	1	1	1	-	1
FR DC 9a	3W	« Cap d'Antibes – Sud port d'Antibes »	1	1	1	1	-	1
FR DC 9b	3W	« Port d'Antibes – Port commerce de Nice »	1	-	-	-	-	2
FRTR 2	T10	Salses-Leucate	2	2	3*	-	36	2
FRTR 3	T10	La Palme (site de référence)	1	1	1*	-	12	2
FRTR 4	T10	Bages-Sigean	2	3	3	-	36	3
FRTR 9	T10	Grand Bagnas	1	1	1	-	4	1
FRTR 10	T10	Thau	2	2	3*	-	35	3
FRTR 11a	T10	Or	2	2	2	-	16	2
FRTR 11b	T10	Palavasiens Est	2	2	3*	-	40	3
FRTR 14d	T10	Complexe Vaccarès	1	1	1	-	**	1
FRTR 15a	T10	Berre – Grand étang	1	1	1	-	**	2
FRTR 20	1	Grand bras du Rhône	-	1	2*	-	-	-

^{*} dont 1 point de suivi concerne les comptages de flore

^{**} stratégie spatiale à valider pour la DCE

2.3.2.3. Appui des réseaux de surveillance existants

La mise en œuvre du programme s'est prioritairement appuyée sur les réseaux existants, qu'ils soient nationaux ou opérés dans le cadre de la politique littorale du bassin (Tableau 2):

- le REPHY (Réseau de Surveillance du Phytoplancton et des Phycotoxines),
- le RINBIO (Réseau Intégrateurs Biologiques),
- le RNO (le Réseau National d'Observation de la qualité du milieu marin),
- le RSL (Réseau de Suivi Lagunaire),
- ➤ le SOMLIT (Service d'Observation en Milieu Littoral),
- le RSP (Réseau de Surveillance Posidonies).

Tableau 2 : Réseaux appuyant la mise en œuvre de la campagne DCE, en fonction des paramètres mesurés

Paramètres mesurés	Campagne DCE	Appui des réseaux existant Eaux côtières Eaux de Trans		
Chimie	2006	RINBIO	RINBIO	
Offillitie	2000	RNO	RNO	
Hydrologie	2006	REPHY	REPHY	
Tydrologie	2000	SOMLIT	RSL	
Phytoplancton	2006	REPHY	REPHY	
Filytopiancton	2000	SOMLIT	RSL	
Posidonie	2006	RSP		
Macrophytes	2006		RSL	
Benthos	2006		RSL	
Ichtyofaune	2009			
Macroalgues	2009			

Le **réseau de contrôle de surveillance « DCE »** constitue un nouveau référentiel pour la localisation et la dénomination des sites, ainsi que l'ensemble des suivis qui seront réalisés sur chacun des ces sites.

Les sites des réseaux existants sont repris dans ce référentiel lorsqu'ils répondent aux nouveaux critères de la stratégie d'échantillonnage DCE. D'autres sites seront, le cas échéant, repris pour d'autres types de contrôles DCE, en particulier opérationnels, ou pour d'autres finalités.

2.3.3. Opérations de terrain

Conformément aux travaux du Comité de pilotage du SDDE, la première campagne du contrôle de surveillance a été réalisée en **2006**, le contrôle opérationnel étant prévu en **2009**.

La fréquence du suivi dépend du type de la masse d'eau, des paramètres de qualité suivis et de la période de l'année, allant d'une fréquence hebdomadaire (phytoplancton) à annuelle ou pluriannuelle (macrophytes, benthos, posidonie).

Le calendrier et les fréquences de suivi du contrôle de surveillance sont présentés en annexe (7.1). La stratégie temporelle d'échantillonnage est présentée plus en détail dans le chapitre 3 « Méthodologie ».

Le suivi des masses d'eau côtières a été réalisé dans le cadre d'une campagne pluridisciplinaire, pour laquelle le réseau RINBIO a été identifié en tant que campagne support, permettant de réaliser sur l'ensemble des eaux côtières du district, les prélèvements nécessaires au suivi de tous les descripteurs retenus.

Pour les paramètres qui nécessitent une stratégie temporelle élevée (à savoir pour l'hydrologie, la chlorophylle et le phytoplancton), des campagnes de prélèvements complémentaires ont été organisées en fédérant l'intervention de plusieurs opérateurs.

En 2007, une campagne complémentaire d'acquisition de données sur le descripteur Posidonie a été réalisée pour consolider les résultats obtenus en 2006.

Le suivi des lagunes a également été réalisé dans le cadre d'une campagne pluridisciplinaire s'appuyant sur les suivis du RSL.

2.3.3.1. Moyens humains

Du fait de leurs missions statutaires, l'Agence de l'Eau Rhône-Méditerranée Corse et l'Ifremer coopèrent depuis de nombreuses années en matière de connaissance, de surveillance, de protection, de gestion et de mise en valeur du littoral méditerranéen.

Ifremer a été identifié par le SDDE du bassin comme l'organisme responsable de la coordination opérationnelle de ces campagnes d'acquisition des données ainsi que leur bancarisation au sein de la base de donnée Quadrige21.

Divers organismes spécialisés ont été associés à ce programme pour la mise en œuvre des campagnes, le traitement et l'interprétation des données, sous la responsabilité de l'Ifremer:

- ❖ Les bureaux d'études : Créocéan ; Hydreco ; Aqua Expert
- L'association ADENA
- ❖ L'INSU de Banyuls, Marseille et Villefranche sur Mer
- ❖ Le laboratoire ARAGO à Banyuls, l'Institut Pasteur de Lille, le Laboratoire de Chimie de Rouen, le CIRAD de Montpellier
- Les Universités : UM2 Montpellier
- ❖ Les CQEL² (départements 13, 83, 34); le GIPREB³
- ❖ Les Réserves Naturelles de Camargue ; de Banyuls ; de Port Cros et le Parc Marin de la Côte bleue

³ GIPREB : Groupement d'Intérêt Public pour l'Etang de Berre

¹ Quadrige2 est la base de données environnementales de l'Ifremer

² CQEL : Cellules Qualité Eaux Littorales

2.3.3.2. Moyens logistiques

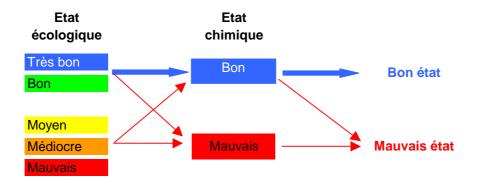
Grâce à la logistique du RINBIO et l'appui du navire océanographique *l'Europe* ¹, il a été possible de réaliser sur l'ensemble des masses d'eaux côtières du district les prélèvements relatifs aux paramètres Chimie, Posidonie et Macrofaune benthique.

Figure 8: Bateau Ifremer « L'Europe »

Pour les paramètres hydrologie et phytoplancton, les prélèvements ont été assurés grâce au concours des moyens nautiques mis a disposition par les différents partenaires du programme.

Pour les lagunes, les prélèvements ont été assurés grâce aux moyens nautiques du LER/LR² pour les lagunes de LR, et de la Réserve Nationale de Camargue et du GIPREB pour les lagunes de PACA.

Fiche technique du navire l'*Europe* accessible sur le site Ifremer : http://www.ifremer.fr/flotte/navires/cotiers/europe/index.htm


² LER/LR: Laboratoire Environnement Ressources du Languedoc-Roussillon (Ifremer Sète)

2.4. Critères de classification des masses d'eau

2.4.1. Le bon état

La DCE définit le « bon état » d'une masse d'eau quand son état chimique et son état écologique sont au moins bons (Figure 9).

Figure 9 : Principe d'évaluation du « bon état » d'une masse d'eau

D'ores et déjà, les masses d'eau sont qualifiées en fonction de deux états :

- ✓ L'état de qualité **chimique** est exprimé de manière binaire, par rapport à une valeur seuil : état de qualité de la masse d'eau bon (1) ou mauvais (0).
- ✓ L'état de qualité **écologique** est exprimé sur une échelle allant de 1 (correspondant à la condition de référence) à 0 (détérioration sévère du BQE¹), et subdivisé en 5 classes de qualité allant de « Très bon » à « Mauvais ». L'état de qualité écologique contient les éléments de qualité biologique, physico-chimique et des polluants spécifiques (Tableau 3).

¹ BQE: Biological Quality Elements

Autres Etat écologique **Etat chimique** Chimie sous Physicosubstances substances **Biologie** tendant la chimie prioritaires dangereuses biologie Hydro-**Paramètres** Phytoplancton morphologie Polluants généraux 33 substances 8 substances spécifiques Posidonie Macrophytes **Benthos** Ichtyofaune

Macroalques

Tableau 3 : Caractérisation des paramètres mesurés pour atteindre le bon état des masses d'eau

Le Système d'Evaluation de l'Etat de l'Eau (SEEE) précisera au niveau national les modalités exactes de qualification de l'état des masses d'eau.

2.4.2. Caractérisation de la qualité chimique

L'état chimique ne peut prendre que deux valeurs, bon ou mauvais. Il est évalué par rapport à des **valeurs seuils** (les normes de qualité environnementale ou NQE) **fixées pour chaque substance prioritaire retenue** (Circulaire MEDAD 2007/23 du 07/05/07).

Concernant les performances analytiques requises, les textes demandent que la sensibilité (limite de détection et de quantification), ainsi que la précision (reproductibilité et justesse) répondent aux critères suivants :

- limite de détection au moins égale à 30 % de la limite du bon état
- aptitude à classer les masses d'eau dans l'une ou l'autre classe, avec une marge d'erreur acceptable.

2.4.3. Caractérisation de la qualité biologique

Les **conditions de référence** ont été établies comme les **composantes optimales de la qualité biologique**. Selon les recommandations de la DCE, les conditions de référence doivent être déterminées à partir d'analyses spatiales, de données paléo-écologiques (historiques), de la modélisation et du jugement d'experts scientifiques du MED-GIG ¹.

Par conséquent, le site considéré comme ayant un statut écologique optimal présente les meilleurs valeurs des métriques sélectionnées (maximum ou minimum en fonction de la nature de la métrique : *i.e* la quantité minimum de phosphore et le recouvrement maximum d'un herbier).

¹ MED-GIG (Groupe d'Intercalibration Géographique Méditerranée)

De même, un **site dit de « mauvaise qualité »** (correspondant aux pires conditions existantes) est défini par la moyenne des moins bonnes valeurs pour chaque métrique.

Le ratio entre l'actuel statut d'un BQE d'un site défini et le statut de référence est appelé EQR (Ecological Quality Ratio). L'EQR correspond au rapport entre la valeur de la métrique mesurée et la valeur de la métrique dans des conditions de référence.

Le statut écologique devant être réglementairement classé en cinq catégories (de « Très bon » à « mauvais »), **cinq limites de classes** doivent être fixées pour chaque BQE, sur une échelle des EQR comprise entre 0 et 1. (Tableau 4)

Tableau 4 : Echelle de couleur associant l'état écologique aux valeurs d'EQR correspondant (valeurs données à titre indicatif).

Qualité écologique		Très bon		Bon		Moyen		Médiocre		Mauvais	
EQR	1		0.75		0.55		0.325		0.10		0

Selon les annexes V et VII de la DCE et le contenu des SDAGE, deux représentations cartographiques faisant état de la qualité écologique et chimique des eaux littorales du district devront être réalisées.

D'ores et déjà, la Charte graphique du SDAGE recommande de représenter l'évaluation des résultats DCE de l'état écologique sur une carte selon trois classes (très bon état, bon état, inférieur à bon état) et la carte chimique selon les deux classes (bon état et pas bon état).

Les cartes illustrant les résultats de cette première campagne DCE sont consultables en annexe (7.10).

3. Méthodologie

3.1. **Chimie** (Substances hydrophobes et intermédiaires)

3.1.1. Protocole

La mesure directe des contaminants dans l'eau fait appel à des techniques de prélèvement et d'analyse sophistiquées et coûteuses, difficilement applicables à de nombreux échantillons à prélever le long d'un important linéaire côtier. Par ailleurs, la variabilité du milieu littoral ne confère que peu de signification à une mesure ponctuelle effectuée dans la colonne d'eau.

Le biomonitorage utilisant la moule repose sur l'hypothèse que le contenu en contaminant chez cet animal reflète la concentration en contaminants biodisponibles dans l'eau sous formes particulaire et / ou dissoute, selon un processus de bioaccumulation.

Les techniques dites des bioindicateurs quantitatifs utilisent cette propriété pour suivre la contamination chimique du milieu, tout en atténuant les fluctuations à court terme du milieu. Les stratégies développées sont de deux types : celles qui utilisent les populations indigènes de moules sauvages ou cultivées (biomonitorage passif, cas du RNO) et celles qui ont recourt aux transplants d'individus provenant d'un site de référence (biomonitorage actif).

Les gisements naturels de moules n'étant pas présents sur tout le linéaire côtier en Méditerranée française pour renseigner l'ensemble des masses d'eau retenues, le Réseau Intégrateurs Biologiques (RINBIO) s'appuie sur cette dernière stratégie, et a été retenu pour évaluer les niveaux de contamination chimique dans le champ moyen de chaque masse d'eau sélectionnée.

3.1.1.1. Principe

** **Espèce**

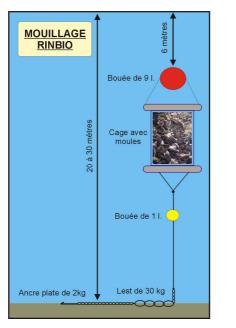
La moule de Méditerranée Mytilus galloprovincialis est le modèle biologique utilisé, en raison des facilités d'approvisionnement, de sa robustesse et de la bonne connaissance de cette espèce.

Le lot de moule est originaire des filières en mer des Aresquiers en Languedoc-Roussillon, zone reconnue comme peu contaminée au regard des résultats des précédentes études.

Pour garantir l'homogénéité des lots, une taille de 50 mm, correspondant à des jeunes adultes d'environ 18 mois, est respectée à plus ou moins 5 millimètres.

& Echantillons

Chaque échantillon est composé d'un lot de 2,5 kg de moules calibrées, stockées dans une poche ostréicole. Les échantillons retrempent sur leur site d'origine 4 à 5 jours avant la campagne de pose.


❖ Période d'immersion

Une immersion de 2,5 mois, comprise entre mars et juillet est recommandée pour obtenir un compromis entre plusieurs exigences :

- → immerger des individus avec suffisamment de réserves énergétiques pour éviter des différences importantes de composition biochimique chez les individus à l'échelle du réseau,
- → opérer pendant la phase de repose sexuel où le métabolisme des individus est le plus stable.

Structure et support des mouillages

❖ Pour les **stations des eaux côtières**, le mouillage de subsurface est constitué d'une poche conchylicole, reliée à un lest de 30 kg et maintenue en pleine eau à une profondeur de 15 m grâce à un flotteur de 11 litres (Figure 9).



Figure 9 : Schéma et photo de la structure du mouillage RINBIO

Pour les **stations lagunaires**, le lot composé de 2,5 kg de moules est également stocké en poche ostréicole. La profondeur des stations, variable selon la configuration bathymétrique des lagunes, permet de maintenir les échantillons à plat à mi-profondeur, sur un trépied ou fixés aux tables conchylicoles.

3.1.1.2. Stratégie d'échantillonnage

La campagne 2006 a été conçue pour répondre aux objectifs de la DCE. Le découpage du littoral méditerranéen en masses d'eaux côtières et de transition ayant été réalisé dès 2002, le réseau RINBIO avait déjà montré lors de la campagne 2003 qu'il pouvait s'adapter à ce nouveau référentiel et renseigner le champ moyen de l'ensemble des masses d'eau identifiées.

En 2006, le plan d'échantillonnage du RINBIO comportait 75 stations mer et 33 stations lagunaires.

33 stations (cf. cartes annexe 7.10) ont été retenues pour la DCE et ont fait l'objet de prélèvements de chair supplémentaires pour analyser, en complément des paramètres du RINBIO, les contaminants hydrophobes et intermédiaires de la liste des 41 substances retenus (cf. 3.1.2).

3.1.1.3. Opérations de pose

L'immersion des échantillons en mer ouverte (PACA, Languedoc-Roussillon) a été réalisée entre le 20 mars et le 7 avril 2006 avec le N/O1 Europe. L'utilisation d'un navire océanographique a permis de conditionner en vivier de 3,5 m³ l'ensemble des poches nécessaires à la campagne et tout le matériel des lignes de mouillage.

Les stations dans les lagunes ont été immergées entre le 27 mars et le 14 avril 2006.

3.1.1.4. Opérations de relève

Malgré des conditions de mer souvent difficiles, qui ont nécessité d'adapter au jour le jour la logistique, la campagne a été menée entre 31 mai et le 15 juin 2006.

La récupération s'est principalement faite en plongée. Elle est rapide, le temps de récupération demande en moyenne 5 à 10 min. Elle est peu dangereuse car les poches sont stabulées entre 6 et 10 m ce qui ne nécessite pas de palier de décompression. Elle permet de visualiser en pleine eau la tenue du mouillage et donc son comportement depuis la pose (Figure 10).

¹ N/O : Navire Océanographique

Figure 10 : Récupération des stations en plongée.

La récupération des stations lagunaires a été réalisée entre le 5 et le 23 juin 2006.

Toutes les stations retenues au titre du contrôle de surveillance ont été retrouvées, à l'exception de la station « plage Napoléon » qui a été remplacée par la station Ponteau retrouvée dans le golfe de Fos.

Sur site et par station, les moules ont été lavées à l'eau de mer, dégrappées, triées en séparant les individus morts des individus vivants. La mortalité de chaque poche a été déterminée. Un lot de 15 individus a été constitué pour le suivi biométrique des échantillons et un lot d'environ 120 individus pour la mesure des 41 contaminants (cf. 3.1.2).

3.1.2. Paramètres analysés

Des procédures standardisées ont été utilisées pour estimer sur chaque échantillon :

- mortalité du lot, taille de la coquille, poids humide de chair, poids sec de chair, poids sec de coquille, indice de condition,
- concentrations moyennes en métaux lourds (cadmium, mercure, zinc, plomb, cuivre, arsenic, nickel et chrome) et en contaminants organiques (polychlorobiphényles (PCB), hydrocarbures aromatiques polycycliques (PAH)), αHCH et γHCH, DDT, DDE et DDD),
- sur les 33 stations retenues au titre du contrôle de surveillance, les contaminants appartenant aux annexes IX et X de la DCE ont été sélectionnés en fonction de leur potentiel de bioaccumulation. Le critère retenu a été la valeur du coefficient de partage octanol/eau (log Kow) supérieur à 3 pour un composé susceptible de se bioaccumuler et la disponibilité d'une méthode analytique opérationnelle dans la matière vivante, soit en complément des contaminants RINBIO déjà inclus dans l'annexe X : Pentachlorobenzène, Hexachlorobenzène, Aldrine, Isodrine, Endosulfan, Trifluraline, Pentachlorophénol, Hexachlorobutadiène, Chloropyriphos, Composés du TBT, Nonylphénols, Octylphénols, Diethylhexylphtalate, (DEHP), C10 C13 Chloroalcanes, Diphenylethers bromés (PBDE), Trichlorobenzène.

- Pour les Nonylphénols, ce sont les Nonylphénols totaux (mélange technique) et le 4-para-nonylphénol qui ont été analysés.
- Pour les Octylphénols, c'est le para-tert-octylphénol qui a été analysé.
- Pour le Trichlorobenzène, c'est le 1, 2, 4 Trichlorobenzène qui a été analysé.
- Pour l'Endosulfan, ce sont les isomères α et β qui ont été analysés et sommés.

Les protocoles analytiques sont fournis en annexe (7.2).

12 molécules non mesurables dans la matière vivante, en raison d'un coefficient de partage octanol/eau (log Kow) inférieur à 3, seront suivies dans l'eau au cours d'un programme à définir d'ici la prochaine campagne DCE du contrôle de surveillance, en 2009 : Alachlore, Atrazine, Benzène, 1,2 Dichloroéthane, Dichlorométhane, Diuron, Isoproturon, Simazine, Trichlorométhane, Tétrachlorure de carbone, Perchloréthylène, Trichloréthylène.

3.1.3. Méthodes de traitement et d'interprétation

Des Normes de Qualité Environnementales (NQE) ont été construites à partir de l'évaluation du risque que la substance concernée fait courir à l'environnement ou à la santé humaine (Circulaire MEDAD 2007/23). Les principes de la méthodologie en cascade de détermination de la NQE sont décrits plus en détail dans le bulletin RNO 2006.

Les NQE *provisoires* pour les 41 substances ont été définies dans la circulaire 2007/23 du 7 mai 2007 du MEDAD. Elles ont été utilisées pour réaliser cette première évaluation de l'état chimique des masses d'eau des districts Rhône et côtiers méditerranéens et Corse. A noter que, d'une part ces normes n'ont pas en tant que telles de portée de nature réglementaire, d'autre part elles ont été édictées de manière *provisoire*, dans l'attente d'une Directive fille de la DCE qui devrait établir de manière définitive les NQE pour ces 41 substances.

Les NQE étant exprimées en concentrations dans l'eau, il convient de convertir les résultats obtenus dans le biote en concentrations équivalentes dans l'eau. La méthode utilisée dans le cadre de cette étude est décrite dans le bulletin RNO 2006. Elle permet, via l'utilisation d'un facteur de bioconcentration, de convertir les concentrations dans le biote en concentration équivalente dans l'eau :

C Mollusque = C Eau * BCF Mollusque

D'ou C Eau = C Mollusque / BCF Mollusque

Avec C eau : Concentration de l'eau en µg/l

C Mollusque : Concentration du mollusque en µg/kg poids humide

BCF : le facteur de bioconcentration

Lorsque les BCF pour les molécules concernées n'étaient pas disponibles, une méthode de calcul utilisant log Kow a été utilisée.

- $\log \text{Kow} = 2 6 : \log \text{BCF} = 0.85. \log \text{Kow} 0.70$
- $\log \text{Kow} > 6$: $\log \text{BCF} = -0.20$. $\log \text{Kow}^2 + 2.74$. $\log \text{Kow} 4.72$

Cette méthode de conversion entre le biote et l'eau présente des facteurs d'incertitude importants :

- elle ne permet pas la prise en compte des éventuels processus de métabolisation de la substance qui ont lieu dans l'organisme (processus a priori inexistant chez les mollusques),
- il existe la plupart du temps des incertitudes sur le BCF. Afin d'être conservatif, c'est la valeur la plus faible qui sera utilisée dans les calculs (plus le BCF est faible, plus la concentration dans l'eau et maximisée).

La conversion du résultat d'analyse en poids humide a été faite en divisant la mesure réalisée en poids sec de chair par le rapport entre le poids humide de chair et le poids sec de chair mesuré pour chaque échantillon.

3.2. Hydrologie

3.2.1. Localisation des sites de prélèvements

Le suivi des paramètres hydrologiques (température, salinité, turbidité, oxygène dissous et nutriment) a été réalisé sur toutes les masses d'eau de transition, en parallèle du phytoplancton. Dans cette étude, compte tenu des instructions de la circulaire DCE 2007/20 seul l'oxygène dissous a pu être renseigné à titre rétroactif.

Les stations de suivi sont reprises dans les tableaux 6 et 7 du chapitre 3.3.1

3.2.2. Protocole de prélèvement

La circulaire DCE 2007/20 précise pour les paramètres physico-chimiques généraux (température, salinité, turbidité, oxygène dissous et nutriments – cf. annexe 7.1.) la fréquence des prélèvements par plan de gestion en ce qui concerne la Méditerranée :

- température, salinité, turbidité : tous les ans en fonction des besoins de la physicochimie et de biologie,
- > oxygène dissous: tous les ans de juin à septembre en même temps que le phytoplancton pour les eaux côtières et tous les ans une fois par mois, de juin à septembre, pour les eaux de transition,
- nutriments: deux fois par plan de gestion et tous les mois de l'année sur les eaux côtières; deux à six fois par plan de gestion et une fois par mois, de juin à août, sur les eaux de transition lagunaires.

Sur les masses d'eau côtières, le suivi des nutriments ne sera mis en œuvre qu'à partir de 2009. Seules les données d'oxygène dissous ont fait l'objet d'un traitement au cours de cette campagne, ce qui concerne les stations REPHY et SOMLIT.

Sur les masses d'eau de transition, le suivi des paramètres hydrologiques (température, salinité, turbidité et oxygène dissous) et des nutriments a été réalisé sur toutes les lagunes.

Les mesures sont effectuées *in-situ* en sub-surface, à -1 m, simultanément avec les prélèvements d'eau destinés à la mesure du phytoplancton. En lagune profonde, un prélèvement supplémentaire est réalisé à un mètre du fond. De même, l'analyse des nutriments des lagunes est réalisée simultanément aux autres paramètres, et effectuée selon les procédures Ifremer¹.

_

Description de la procédure selon la fiche technique n°8 du document « Stratégie d'échantillonnage et protocoles pour la surveillance du milieu marin » en cours de validation

Figure 11: Mesure de paramètres hydrologiques (R. Dupuy de la Grandrive /ADENA, 2007)

3.2.3. Analyse des données

Pour les données d'oxygène dissous, la métrique retenue est le Percentile 10 calculé sur des données mensuelles, selon la formule reportée en annexe (7.5.2).

Chaque paramètre prélevé en lagune (température, turbidité, nutriment, oxygène dissous...) a son importance pour une interprétation globale de la qualité de la masse d'eau. Ces données sont exploitées dans leur ensemble et sont reportées directement dans la grille de qualité présentée dans le paragraphe suivant.

3.2.4. Classification

Eaux côtières

Actuellement, dans le cadre des travaux du groupe national, seule la grille du paramètre Oxygène dissous a été validée (Tableau 5).

Tableau 5 : Grille de classement pour la teneur en oxygène dissous

		percentile 10 oxygène dissous (mg.L ⁻¹)					
	période	très bon	bon	moyen	médiocre	mauvais	
toutes zones	juin – septembre	>= 5	>= 3 - < 5	>= 2 - < 3	>=1-<2	<1	

Concernant les paramètres généraux venant en appui à la biologie, en particulier les nutriments, les grilles de qualité restent à définir pour les eaux côtières.

Eaux de transition

Sur les eaux de transition, les grilles de qualité se basent sur celles mises en œuvre dans le cadre du RSL¹. La grille de lecture de l'eau est remplie à partir d'un triple échantillonnage reparti sur les trois mois d'été (juin, juillet et août). Pour chaque variable, la valeur la plus élevée des trois mois est retenue pour remplir la grille (Tableau 6). Chaque grille conduit à un état général obtenu en retenant l'avant dernier état le plus déclassant.

Tableau 6 : Grille de lecture de l'eau utilisée en fonction des différentes variables mesurées (Eaux de transition, type lagune)

Variable		Très bon		Bon		Moyen		Médiocre		Mauvais
Δ %O2 SA	Т		20		30		40		50	
TUR	(NTU)		5		10		25		40	
PO43-	(µM)		0,3		1		1,5		4	
NID	(µM)		2		6		10		20	
NITRI	(µM)		0,3		0,5		0,75		1	
NITRA	(µM)		1		3		5		10	
AMMO	(µM)		11		3		5		10	
NT	(µM)		50		75		100		120	
PT	(µM)		0,75		1,5		2,5		4,5	

Les variables utilisées dans la grille sont les suivantes : $| \Delta \%02 \text{ SAT} |$: écart par rapport à 100% de saturation (sans unité), TUR: turbidité (NTU), PO43-: concentration en phosphates (μM) , NID: concentration en azote inorganique dissous (μM) , NITRI: concentration en nitrites (μM), NITRA: concentration en nitrates (μM), AMMO: concentration en ammonium (μM) , NT: concentration en azote total (μM) , concentration en phosphore total (μM) .

* Les paramètres de Chl-a et Chlaphe sont traités indépendamment de l'hydrologie et ce, dans le chapitre « Biomasse » en lagunes (chapitre 3.3.3.1).

¹ Note relative à la définition du bon état des eaux littorales (eaux côtières et de transition), en application de la directive européenne 2000/60/CE du 23 octobre 2000, à la fin du premier exercice d'intercalibration européen (juillet 2007).

3.3. Phytoplancton

3.3.1. Localisation des sites de prélèvements

3.3.1.1. Eaux côtières

Les stations ont été choisies pour être représentatives de la masse d'eau sélectionnée (Tableau 7). De nouvelles stations DCE ont été créées en complément du REPHY et du SOMLIT.

Tableau 7 : Sites de prélèvements et masses d'eau concernés par l'étude du phytoplancton en eaux côtières

ME	Nom ME	Nom station
FRDC01	Espagne - Racou plage	Banyuls Sola
FRDC02a	Racou pl Emb. Aude	Gruissan
FRDC02c	Cap d'Agde	Agde
FRDC03	Estuaire du Rhône	Courbe et Rousty
FRDC04	Golfe de Fos	Anse Carteau 2
FRDC05	Cote bleue	Carry
FRDC06b	Marseille - Frioul	Endoume
FRDC07b	Croisette – Bec aigle	Cap canaille
FRDC07e	Pierre plane - Gaou	Embiez
FRDC07g	Cepet - Carqueiranne	Toulon
FRDC07h	lles du soleil	Port Cros
FRDC08d	Fréjus – Pointe galère	Fréjus est
FRDC09d	Rade Villefranche	Villefranche B

3.3.1.2. Eaux de transition

Pour le type lagune, les stations ont été sélectionnées en nombre suffisant pour obtenir une bonne représentativité de l'état général de la masse d'eau et positionnées en fonction de sa morphologie (surface, nombre de sous-bassins versant,...) (Tableau 8).

Le plan d'échantillonnage s'est essentiellement basé sur celui du RSL.

Tableau 8 : Sites de prélèvements et masses d'eau concernés par l'étude du phytoplancton en lagunes

Code masse d'eau	Nom de la station
	Leucate Nord (LEN)
FRDT 02	Leucate Sud (LES)
	Parc Leucate 2 *
FRDT 03	LaPalme (LAP)
FRDT 04	Bages Nord (BGN)
	Bages Milieu (BGM)
	Bages Sud (BGS)
FRDT 09	Grand Bagnas (BAN)
	Thau Est (TE)
FRDT 10	Thau Ouest (TW)
	Bouzigues *
	Or Ouest (ORW)
FRDT 11a	Or Est (ORE)
	Etang du Prévost *
FRDT 11b	Prévost Ouest (PRW)
	Méjean Ouest (MEW)
FRDT 14d	Vaccarès (VC)
FRDT 15a	Berre (BE)
FRDT 20	Grand Rhône

^{*} Comptage de flore

3.3.2. Protocole de prélèvement

Les prélèvements de phytoplancton sont réalisés en sub-surface (-0,5 à -1 m), à l'aide d'une bouteille à clapet (type Hydrobios), ou d'un seau de 10 litres et de plusieurs flacons d'1 litre.

Le contenu des bouteilles est alors reparti de la manière suivante:

- 2 flacons de 2 L, pour la Chlorophylle (Chl-a)
- 1 flacon de 1 L, auquel est ajouté un tube de lugol, pour le dénombrement du phytoplancton
- 1 flacon de 250 mL pour les mesures de turbidité et salinité

Les échantillons sont conservés à l'abri de la lumière et à basse température, dans une glacière. La flore peut être observée dès le retour au laboratoire alors que les échantillons fixés (Chl-a) doivent auparavant décanter dans les cuves.

Toutes les stations n'ont pas fait l'objet d'une même fréquence d'échantillonnage. Certaines stations dites de référence ont été prélevées toutes les semaines de février à juin et tous les 15 jours à partir de juillet. Les autres stations ont été prélevées tous les mois.

L'objectif est, en s'appuyant sur ces stations à haute fréquence, faciles d'accès et représentatives de la typologie, d'optimiser l'interprétation des résultats sur l'ensemble des stations en s'affranchissant d'une fréquence d'échantillonnage difficile a mettre en œuvre à l'échelle du district.

3.3.3. Analyse des données

Trois paramètres concernant le phytoplancton (la composition, l'abondance et la biomasse) sont applicables dans les eaux côtières et de transition. Cependant la Circulaire DCE 2007/20 et les travaux d'intercalibration européens ne fournissent des grilles de qualité que pour le paramètre biomasse.

3.3.3.1. Biomasse

L'indicateur retenu pour la biomasse du phytoplancton est la concentration des eaux en **chlorophylle-a.** En effet, celle-ci est présente dans une très grande majorité de cellules phytoplanctoniques, elle est simple à mesurer, et elle traduit bien la biomasse du phytoplancton tout en étant complémentaire de l'information apportée par le dénombrement des espèces (Figure 12). Les concentrations en phéopigments ne sont pas retenus pour le calcul de l'indicateur chlorophylle (exprimé en $\mu g/L$), car ils présentent une trop grande variabilité, et sont trop influencés par la présence de certaines classes phytoplanctoniques.

Figure 12: Rampe à filtration pour la chlorophylle (Ifremer, 2005)

Pour les données de biomasse (chlorophylle-a)¹, le percentile 90 (P90) des données de mesures acquises est calculé. Le P90 permet la prise en compte d'une grande majorité de données, y compris des pics d'abondance, à l'exception des données extrêmes de ces pics. La formule mathématique du percentile 90 est détaillée dans l'annexe 7.6.1.

¹ Durand et al. 2007

3.3.3.2. **Abondance**

* Eaux côtières

L'indicateur retenu pour l'abondance utilise la notion d'efflorescence (ou bloom) de toutes les espèces identifiées au microscope par méthode Utermohl. L'utilisation de cet indicateur « efflorescence » apporte une information plus spécifique que la chlorophylle, puisque toutes les espèces phytoplanctoniques ne contiennent pas de la chlorophylle dans la même proportion.

La métrique utilisée pour cet indicateur est alors le pourcentage d'échantillons pour lesquels un taxon dépasse la concentration-seuil fixée pour un bloom, rapporté au nombre total d'échantillons.

Un bloom a été défini pour cet indicateur comme une concentration supérieure à 100 000 cellules par litre pour un taxon pour les grandes cellules¹ et 250 000 cellules pour les petites cellules. Afin de minimiser les biais, seule la valeur maximale est retenue pour une masse d'eau, pour une quinzaine de jours, et pour un taxon donné. Si deux taxons différents dépassent le seuil dans un même échantillon, il n'est compté qu'un seul bloom

Eaux de transition

Pour les lagunes, les méthodes classiques de dénombrement des cellules (microscope à inversion par méthode Utermohl: détermination fiable pour des cellules de taille > 5 um) ne permettent pas d'assurer le comptage de très petites cellules, composantes majeures du phytoplancton des lagunes. La technique de cytométrie en flux (CMF), mise en œuvre dans le cadre du RSL et RLC depuis 2000, permettant le dénombrement des cellules de picophytoplancton (taille cellules < 3µm) et nanoplancton (>3µm) a donc été retenue pour les lagunes.

Le traitement des données vise à qualifier l'abondance phytoplanctonique pour la durée d'un plan de gestion (6 ans au sens de la DCE). La fréquence par plan de gestion recommandée dans la Circulaire DCE 2007/20 pour le suivi du phytoplancton est de :

- 6 fois pour les lagunes de qualité intermédiaire, soit un suivi annuel,
- 2 fois pour les lagunes de qualité très bonne ou très mauvaise, exception faite des sites de référence.

Les données issues du dénombrement par CMF sont traitées au moyen de deux paramètres:

- ➤ abondance² des cellules de picophytoplancton,
- > abondance des cellules de nanophytoplancton.

 $^{^{1}}$ Les « grande cellules » concernent les espèces dont la taille est supérieure à $20~\mu m$

² Abondance en nombre de cellules par unité de volume (10⁶ cellules / L).

L'indicateur produit annuellement pour chaque station correspond, pour le picophytoplancton et le nanophytoplancton, à l'abondance maximale observée au cours de l'été parmi les trois prélèvements mensuels.

Grâce aux données acquises par les réseaux existant, il a été possible de tester la périodicité d'un an sur trois, avec trois combinaisons, soit 2001+2004, 2002+2005 et 2003+2006.

De la même façon que pour les données de biomasse (chlorophylle a), il est proposé, pour l'abondance phytoplanctonique dans les lagunes, de calculer le percentile 90 (P90) des données de mesures en CMF acquises sur six années.

3.3.3.3. Composition

Pour les masses d'eau côtières, la composition est calculée à partir de listes floristiques (Flore Partielle Indicatrice FPI et Flore Totale FT). Les FPI identifient et dénombrent une liste minimale obligatoire de taxons : espèces toxiques (pour le consommateur ou pour la faune marine), espèces nuisibles, douteuses, et indicatrices d'eutrophisation, ainsi que toutes les autres espèces qui prolifèrent de façon importante. Les FPI en Méditerranée concernent 4 genres d'espèces phytoplanctoniques : *Alexandrium*, *Pseudo-nitzschia*, *Dinophysis* et depuis peu *Ostreopsis*.

L'indicateur retenu pour la composition concerne uniquement les espèces phytoplanctoniques **nuisibles**, soit :

- les espèces toxiques ou nuisibles pour la faune marine (pour les eaux côtières),
- les espèces indicatrices d'eutrophisation (pour les eaux de transition).

La métrique utilisée pour cet indicateur est alors le **pourcentage d'échantillons pour lesquels un taxon nuisible dépasse la concentration-seuil fixée pour un bloom**, rapporté au nombre total d'échantillons, et ce sur une année. Un bloom est défini pour cet indicateur comme une concentration supérieure à **un million de cellules par litre**.

La liste provisoire des espèces nuisibles est donnée dans l'annexe 7.6.3.

3.3.4. Classification

3.3.4.1. Biomasse

La grille de qualité retenue pour le contrôle de surveillance (Tableau 9) a partiellement été validée dans le cadre des travaux d'intercalibration européen. Elle tient compte de la typologie des masses d'eau naturelles (types 1, 2A et 3W). Deux limites de classes (moyen-médiocre et médiocre-mauvais) sont toutefois en cours de validation.

Tableau 9 : Grille de classement qualité retenue pour la métrique « biomasse » des eaux côtières et de transition, exprimé en fonction des valeurs du Percentile 90 et de leur typologie (Belin C., 2007)

P90 / type masse d'eau	Nom Masse d'eau	Très bon		Bon		Moyen		Médiocre		Mauvais
P90 / type 1	FR DC 3 et 4		5		10		20		40	
							5,4		10,8	
P90 / type 2A	FR DC 2 et 5		2,4		3,6		ou		ou	
							7,2		14,4	
							2,7		5,4	
P90 / type 3W	FR DC 1, 6 et 9		1,1		1,8		ou		ou	
							3,6		7,2	
P90 / type estuarien	FR DT 20		5		10		20		40	
P90 / type T10	FRTR 02 à 15		5		10		20		40	

3.3.4.2. Abondance

Eaux côtières

La grille de qualité utilisée est celle proposée par l'Ifremer (Belin C., 2007).

Tableau 10 : Grille de qualité proposée pour la métrique « abondance » des eaux côtières, exprimé en fonction du pourcentage de blooms (toutes les espèces) par an.

	Très bon		Bon		Moyen		Médiocre		Mauvais
% blooms/ an (type 1, 2a, 3W)		20		40		70		90	

Eaux de transition

La grille de qualité est celle élaborée dans le cadre des suivis annuels du RSL (Tableau 11). La qualité retenue est la plus mauvaise pour les deux groupes de cellules (pico- et nanophytoplancton).

Tableau 11 : Grille de qualité proposée pour la métrique « abondance » des eaux de transition obtenues par CMF (cel/L.10⁶) sur une année.

		Très bon		Bon		Moyen		Médiocre		Mauvais
< 3µm	Cel/L 10 ⁶		20		50		100		500	
> 3µm	Cel/L 10 ⁶		2		5		10		50	

Une grille de qualité a également été élaborée, en tenant compte d'un plus grand nombre de valeurs (un suivi de 6 ans correspond à 18 valeurs estivales) (Tableau 12) :

- seuil Bon-Moyen = $2.5 \times 10^{-2} \times 10^{-2}$
- seuil Moyen-Médiocre = 2 x seuil Bon-Moyen
- seuil Médiocre-Mauvais = 5 x seuil Moyen-Médiocre.

Le rapport entre les valeurs des seuils proposés pour le picophytoplancton ($< 3 \, \mu m$) et pour le nanophytoplancton ($> 3 \, \mu m$) est de 5. Ce rapport est cohérent avec le fait que, dans les lagunes méditerranéennes, le picophytoplancton représente en moyenne 85 % du nombre total de cellules, soit un peu plus de 5 fois (85/15) le nombre de cellules de nanophytoplancton¹.

Tableau 12 : Grille DCE de qualité proposée pour la métrique « abondance » obtenue par CMF (et pour un plan de gestion de 6 ans) dans les eaux de transition

st	ation		Très bon		Bon		Moyen		Médiocre		Mauvais	
< 3 μm	Cel/L 10 ⁶	0		30		75		150		750		K
> 3 µm	Cel/L 10 ⁶	0		6		15		30		150		$\frac{1}{x_5}$
				/		1 \		1		1		
					x 2,5		x 2		x 5			

3.3.4.3. Composition

La grille de qualité retenue est celle utilisée par l'Ifremer, en eaux côtières et en eaux de transition (Belin, 2007). Pour le moment, deux limites de classes ont été proposées pour définir la métrique « pourcentage de blooms nuisibles » et doivent faire l'objet d'une validation (Tableau 13).

Tableau 13 : Grille de qualité proposée pour la métrique « composition » des eaux côtières et de transition, exprimé en fonction du pourcentage de blooms des espèces nuisibles par an.

	Très bon		Bon		Moyen		Médiocre		Mauvais
nourcentage de		10		17		35		80	
pourcentage de blooms/ an		ou 20		ou 40		ou 70		ou 90	

¹ Ifremer, Creocean, UMII, 2000; André Vaquer, com. pers.

3.4. Posidonie

3.4.1. Localisation des sites de prélèvements

Sur la façade continentale méditerranéenne, 12 stations réparties au sein de 11 masses d'eau côtières, ont été échantillonnées lors de la campagne 2006 (Tableau 14) :

\$\footnote 2\text{ stations (2 masses d'eau) en Languedoc-Roussillon,}

Tableau 14 : Localisation des sites de prélèvement de Posidonie, par masses d'eau

Code	Nom masse d'eau	Nom
Masse d'eau		Station
FRDC01	Espagne - Racou plage	Banyuls
FRDC02C	Cap d'Agde	Agde
FRDC05	Côte bleue	Couronne
FRDC05	Cote bieue	Carry
FRDC06b	Marseille - Frioul	Prado
FRDC 07a	Iles Marseille - COrtiou	Riou
FRDC07b	Cap Croisette - Bec de l'Aigle	Cassis
FRDC07e	Ilot Pierre Plane – Pt Gaou	Brusc
FRDC07g	Cepet - Carqueiranne	Toulon
FRDC07h	lles du soleil	Levant
FRDC08d	Ouest Fréjus - Pte Galère	St Raphaël
FRDC09a	Cap Antibes – Sud port Antibes	Antibes

Sur chaque station, deux secteurs caractéristiques de l'herbier ont été investigués :

Les 12 stations de suivi sont localisées sur les cartes en annexe (7.10).

Les résultats de cette première campagne ont du être consolidés par une deuxième campagne réalisée à la même période (avril 2007) en collaboration avec la STARESO et l'Université de Liège, avec le soutien de l'Agence de l'Eau Rhône Méditerranée et Corse¹.

Les données acquises en 2006 ne permettaient pas, à elles seules, de couvrir l'ensemble des bornes des classes d'état des herbiers, notamment les classes « médiocre » et « mauvais ». Le nombre de stations était également insuffisant pour définir clairement la limite de classe entre « état moyen » « bon état ».

Ces deux campagnes complémentaires ont également permis de mettre en avant la variabilité des valeurs de références en fonction de la typologie des masses d'eau pour les différents paramètres retenus pour un calcul rigoureux et reproductible de l'EQR Posidonie.

Ifremer

^{\$\}to\$ 10 (9 masses d'eau) en PACA.

^{\(\)} la limite inférieure de l'herbier,

b et la profondeur intermédiaire (-15 m).

¹ Ifremer, 2007. Soutien méthodologique à la mise en œuvre de la DCE : validation du protocole de l'EQR dans les écorégions LR et PACA.

Deux secteurs (sous-éco-régions correspondant d'une part aux types B et C et d'autre part aux types D, E, F, G, I et J) ont ainsi été définis dans le district Rhône et côtiers méditerranéens. Ces secteurs correspondent au littoral Languedoc-Roussillon et au littoral PACA.

Dans la région d'Agde, les herbiers se rencontrent sous la forme de petites taches sans réelle limite supérieure et inférieure (ADENA, 2003). Dans la région de Banyuls-surmer, *Posidonia oceanica* forme des peuplements plus importants, mais ne s'étendant pas au-delà de 20 m de profondeur, sans pour cela permettre de distinguer deux tranches de profondeur différentes pour leur suivi.

Ces campagnes couplées avec des opérations similaires dans le district Corse ont permis de valider et généraliser le mode de calcul de cet EQR à l'ensemble des côtes méditerranéennes françaises.

3.4.2. Protocole de prélèvement

L'étude des herbiers a été réalisée aux mois d'Avril 2006 et 2007.

5 paramètres ont été retenus : (1) la limite inférieure et (2) le type de limite ; à 15 mètres de profondeur : (3) la densité, (4) la surface foliaire et (5) la charge en épibionte sur les feuilles, tous, mesurés selon un protocole standardisé (Tableau 15).

Tableau 15 : Descripteurs de l'herbier de *Posidonia oceanica* en fonction de la tranche bathymétrique des différents paramètres prélevés

Descripteur	Tranche bathymétrique
Profondeur	LI
Type de limite	LI
Densité	PI
Surface foliaire	PI
Charge en épibionte	PI

LI : limite inférieure ; PI : profondeur intermédiaire (-15 m).

3.4.2.1. Descripteurs de la vitalité de l'herbier

A. <u>Limite inférieure : profondeur et type</u>

Sur chaque site, la profondeur de la limite inférieure (mètres) et l'état dynamique de cette limite ont été notées, *in situ*, par un plongeur en scaphandre autonome. D'autre part des images par vidéo tractée ont été prises sur chacune des stations retenues au titre du contrôle de surveillance. L'état de la limite inférieure a été défini selon Meinesz & Laurent (1978).

Limite progressive: elle est caractérisée par la présence de rhizomes plagiotropes disposés de façon parallèle dans le sens de la pente. L'herbier n'édifie pas de matte, mais il colonise un substrat situé plus profondément (Figure 14). Ce type de limite rend

compte d'un bon état de santé de l'écosystème et peut être l'expression d'une amélioration de la transparence des eaux (Pergent *et al.*, 1995).

- Limite franche: cette limite est brusque, nette entre les derniers rhizomes de Posidonies et le sédiment (absence de matte morte en aval de la limite). Elle est caractérisée par la présence de rhizomes généralement orthotropes, sans édification d'une véritable matte (Figure 15). Ce type de limite traduit une stabilité de l'écosystème.
- Limite régressive: elle est caractérisée par la présence d'une étendue de matte morte, recouverte ou non par le sédiment, en aval de la limite de l'herbier proprement dite. Quelques faisceaux de feuilles subsistent en aval de la limite actuelle (Figure 15). Ce type de limite traduit une perturbation de l'écosystème et une régression des herbiers, probablement liée à une augmentation de la turbidité moyenne des eaux.

B. Densité

Le nombre de faisceaux de Posidonie a été mesuré dans des quadrats de 40cm de côté. A chaque station, un total de 20 quadrats a été lancé au hasard (Soullard et al., 1994), en évitant les taches de sable. Les comptages ont été ramenés par unité de surface (nombre de faisceaux.m⁻²).

C. Surface foliaire

Au laboratoire, les faisceaux ont été détachés des rhizomes et décortiqués en respectant l'ordre distique d'insertion des feuilles. Pour cela, les feuilles ont été séparées selon le protocole de Giraud (1977, 1979). Elles ont été ensuite dénombrées et classées en fonction de leur âge (Figure 13) :

- les feuilles adultes pourvues d'une base ou pétiole,
- > les feuilles intermédiaires, dépourvues de pétiole ou dont le pétiole est inférieur à 2 mm,
- les feuilles juvéniles, dépourvues de pétioles et dont la longueur n'excède pas 50 mm.

Chaque feuille a été numérotée en fonction de sa position dans le faisceau. Les paramètres biométriques de chacune d'entre elles (longueur totale, longueur du pétiole et largeur) ont ensuite été mesurées au millimètre près.

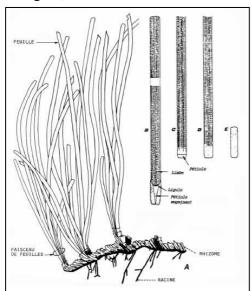


Figure 13 : Rhizome et faisceau de feuille de *Posidonia oceanica* (A). Illustration des différents types de feuilles : a-feuille adulte ; c

et d-feuilles intermédiaires; e-feuille juvénile.

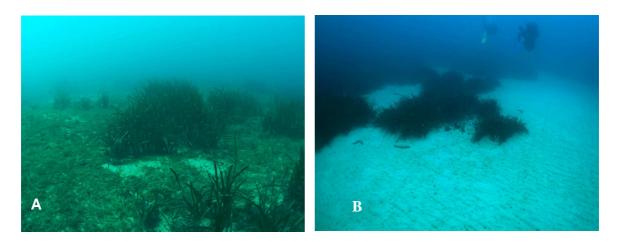
D'après Boudouresque & Meinesz (1982).

Sur la base de ces données biométriques, la surface foliaire de chaque faisceau, exprimé en cm².faisceau⁻¹, a été calculée à l'aide des formules suivantes¹:

 $SF = (\sum des longueurs des feuilles intermédiaires x moyenne des largeurs des feuilles intermédiaires)$

+ (\sum des longueurs des feuilles adultes x moyenne des largeurs des feuilles adultes)

D. Epibiontes


La charge des feuilles en épibiontes a été mesurée. Après les mesures de biométrie, chaque feuille a été grattée sur les 2 faces, avec une lame de rasoir, pour en retirer l'ensemble des épibiontes. L'ensemble des feuilles et l'ensemble des épibiontes d'un même faisceau ont été mis à sécher séparément à 70°C pendant 48h. Ils ont ensuite été pesés avec une précision du milligramme.

Le ratio épibiontes/feuilles a été calculé par faisceau :

E / L_{faisceau} = poids sec des épibiontes / poids sec des feuilles

Figure 14 : Présence de rhizomes plagiotropes traduisant une limite inférieure de type progressive.

¹ Pergent-Martini C, 1994.

Figure 15 : Illustration d'une limite d'herbier de type régressive (A) et d'une limite franche (B).

Figure 16 : Mesures *in situ*, prélèvement et traitement de rhizomes pour l'évaluation de la vitalité des herbiers de Posidonie (Ifremer, 2007)

3.4.3. Classification

3.4.3.1. Conditions de référence

Pour chacun des 5 paramètres retenus, les conditions de référence ont été calculées sur la base des données acquises au cours de ces deux campagnes.

Selon les recommandations du groupe d'expert Angiosperme du MED-GIG (Athènes février 2007), elles ne correspondent pas à une valeur mesurée sur un site particulier ; il s'agit donc de conditions de référence théoriques.

Pour chaque sous-éco-région, la valeur de référence de *la densité et la surface foliaire* a été calculée, à partir des données recueillies sur le terrain, en moyennant les 3 plus hautes valeurs notées sur l'ensemble des stations après suppression de la valeur maximale.

Les conditions de référence pour la *limite inférieure* ont été fixées en fonction des données de la littérature et de la connaissance des experts (Tableau 16).

Tableau 16 : Valeurs de référence de la limite inférieure (m) de l'herbier dans les 3 sous-écorégions du littoral français méditerranéen.

Sous éco-région	Languedoc	Roussillon	PACA	Corse
Valeur de référence de la limite inférieure	12	19	34	40

Pour la *charge en épibionte* (ratioE/L), la valeur de référence a arbitrairement été fixée à 0 g d'épibionte/g de feuille.

3.4.3.2. Calcul de l'EQR

Le calcul de l'EQR, à partir des 5 paramètres retenus pour le BQE posidonies, est basé sur l'équation (1) :

N densité = (densité station - densité de la classe mauvais)/ (densité de référence - densité de la classe mauvais) où densité classe mauvais = 0

^{*} les paramètres densité, surface foliaire et limite inférieure ayant un coefficient de 1 et la charge en épibionte de 0.5, la somme des N a été divisée par (1+1+1+0.5)= 3.5 avec :

- N surface foliaire = (surface foliaire station surface foliaire de la classe mauvais)/ (surface foliaire de référence surface foliaire de la classe mauvais) où surface foliaire de classe mauvais = 0
- ightharpoonup N (E/L) = 1 (E/L)
- N limite inférieure c = Limite inférieure corrigée par l'état de la limite = (limite inférieure station limite inférieure de la classe mauvais) / (limite inférieure de référence limite inférieure de la classe mauvais) où limite inférieure de classe mauvais corrigée = 12 m

La valeur de la profondeur de la *limite inférieure* pour chaque station a été corrigée en tenant compte de la dynamique de cette limite (régression, stabilité, progression) :

- Profondeur de la limite inférieure corrigée= profondeur de la limite inférieure mesurée si la limite est franche ;
- Profondeur de la limite inférieure corrigée= profondeur de la limite inférieure mesurée + 3 mètres si la limite est progressive;
- Profondeur de la limite inférieure corrigée= profondeur de la limite inférieure mesurée 3 mètres si la limite est régressive.

Pour obtenir une valeur de l'EQR corrigé par rapport à l'affectation d'une limite de l'EQR compris entre 0 et 0,1 pour la classe mauvais, classe caractérisée par l'absence d'herbier, l'équation (2) est appliquée.

(2) EQR=
$$(EQR'+0.11)/(1+0.10)$$

Les limites de classes sont présentées dans le Tableau 17.

Tableau 17 : Limites de classe des valeurs de l'EQR Posidonie.

classes		Très bon		Bon		Moyen		Médiocre		Mauvais
EQR	1		0,775		0,550		0,325		0,100	

3.5. Macrophytes

3.5.1. Localisation des sites de prélèvements

Les sites de prélèvement de macrophytes ont été sélectionnés parmi 8 masses d'eau (6 du Languedoc-Roussillon et 2 de la région PACA). Compte tenu de la charge de travail dédiée à l'échantillonnage d'une lagune, seule la lagune de Thau et le complexe palavasien ont été prélevés en 2006.

Pour les autres lagunes, les résultats acquis pendant les 3 dernières années précédant cette campagne (2004 à 2005) ont été retenus pour cet exercice.

Tableau 18 : Lo	ocalisation of	ies stations	de prefevement	des macrophytes.

Code masse d'eau	Nom de la station	Année Prélèvement DCE	Année Résultats RSL existant
FRDT 02	Leucate		2004
FRDT 03	La Palme (site de référence)		2005
FRDT 04	Bages		2005
FRDT 09	Bagnas	2005	
FRDT 10	Thau	2006	
FRDT 11a	Or		2005
FRDT 11b	Palavasiens est	2006	
FRDT 14d	Vaccarès		2005
FRDT 15a	Berre		2004

3.5.2. Protocoles de prélèvement ¹

Pour les masses d'eau lagunaires de LR, le suivi a été réalisé par Ifremer.

Le suivi se déroule au mois de juin, lors de la période de prolifération maximale des végétaux et avant les mortalités estivales (Circulaire DCE 2007/20). La méthode recommandée pour la DCE est celle appliquée depuis 2000 dans le cadre du RSL.

Les lagunes de plus de 1000 hectares, sont partagées en zones de 100 ha et en zones de 50 ha pour les autres. A partir de chaque centre de zone, un réseau de points est établi sur le principe d'un maillage régulier. A partir de chaque point, une estimation des paramètres biologiques est réalisée sur une aire prédéterminée (disque d'un rayon de 10 m autour des points), soit 120 m2 couvert pour chaque station. Le pourcentage de la surface occupée par tous les macrophytes est évalué, ainsi que celui des espèces de référence.

Ifremer, 2005. Recommandations techniques pour un programme de surveillance adapté aux objectifs de la DCE. Stratégies. Fiches n°9

Pour les masses d'eau lagunaires de PACA concernées par le contrôle de surveillance (2 masses d'eau : Berre et Vaccarès), les données du suivi régulier des macrophytes est mis en œuvre dans le cadre des activités du GIPREB et de la Réserve Naturelle de Camargue (RNC).

L'étang du Vaccarès (masse d'eau FRDT14)

Le suivi des macrophytes est mis en œuvre par la RNC tous les ans sur deux transects permanents et environ tous les trois ans sur plus de 200 points d'un maillage régulier (un point tous les 500 m). Le suivi des transects ne concerne que les herbiers de zostères mais le suivi par maillage régulier permet un recensement de toutes les espèces de macrophytes. Au niveau de chaque point, 10 quadrats de 50 x 50 cm sont suivis pour relever le recouvrement végétal (en pourcentage parmi 4 classes : 5-25 %, 25-50 %, 50-75 % et 75-100 %) et le recouvrement de chaque espèce. Ce suivi est complété en 2004 et 2005 par une évaluation du recouvrement des herbiers de zostères par télédétection (CEMAGREF, Tour du Valat, SNPN Réserve Nationale de Camargue, 2005).

❖ L'étang de Berre (masse d'eau « Grand étang » FRDT15a)

Le suivi des macrophytes est opéré par le GIPREB chaque année depuis 1990 sur 23 transects permanents répartis uniformément sur le pourtour de l'étang (Bernard et al., 2004). Chaque transect mesure 100 m de long et fait l'objet, sur 50 cm de part et d'autre de son axe, depuis 1996 d'un dénombrement quantitatif pour trois espèces de Magnoliophytes (phanérogames) et cinq genres de Chlorobiontes et de Rhodobiontes (algues). La fréquence de chaque espèce et l'indice d'abondance moyen (Soltan & Francour, 2000) sont relevés sur chaque transect.

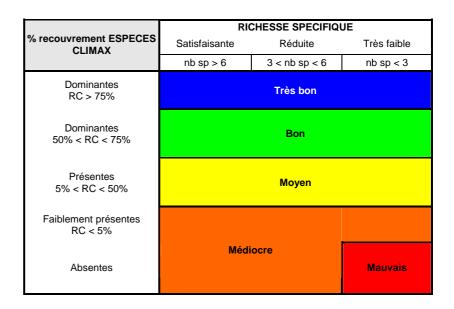
3.5.3. Analyse des données

L'indicateur retenu pour l'évaluation de l'état du compartiment macrophytes est le **pourcentage relatif de recouvrement des espèces climax, croisé avec la richesse spécifique** (liste des espèces climax en annexe 7.6). Ce pourcentage est calculé pour l'ensemble des stations, qui ont un recouvrement végétal > 5%, ce qui permet d'attribuer une classe de qualité à chaque station (Tableau 19). L'état d'une lagune correspond à la moyenne des pourcentages d'espèces climax obtenus sur l'ensemble de ses stations ayant un recouvrement végétal >5%. En soutien à cet indicateur le % de recouvrement végétal (toutes espèces) est également calculé par masse d'eau.

Les données obtenues sur les étangs de Berre et Vaccarès font l'objet d'une **analyse qualitative des peuplements**. La méthode de suivi des macrophytes opérée selon un maillage régulier sur le Vaccarès est proche de celle mise en œuvre sur les étangs corses et languedociens. La méthode de suivi des macrophytes mise en œuvre sur Berre est plus éloignée de celle retenue pour la DCE, puisque l'échantillonnage est ciblé sur la bande littorale, seul secteur où les macrophytes sont encore présents (Bernard *et al.*, 2004).

Les données des lagunes en PACA ont cependant été traitées selon le protocole utilisé en LR et en Corse.

L'exercice a permis de comparer les méthodes, de tester l'application d'une même grille d'interprétation, et de valider un protocole commun pour les futures campagnes du contrôle de surveillance.


Ainsi ont été plus particulièrement abordés :

- l'effet de la réduction du nombre de points de suivi sur la représentativité des résultats (approche spatiale du RSL)
- l'utilisation pour la détermination de l'état de données acquises selon des transects sur le pourtour de la lagune (Berre).

3.5.4. Classification

Le Tableau 19 a été utilisé pour classer le niveau de qualité des zones diagnostiquées, quand le recouvrement des macrophytes est supérieur à 5%.

Tableau 19 : Grille de qualité des macrophytes. Ce tableau peut être utilisé pour le diagnostic global d'une lagune ou d'un secteur lagunaire lorsque le taux de recouvrement est supérieur à 5 %.

<u>État Très bon</u>: les espèces climax dominent, des proliférations d'algues opportunistes peuvent être présentes très localement. Les crises anoxiques sont absentes et la diversité est satisfaisante.

<u>État Bon</u>: les espèces climax dominent, les algues opportunistes prolifèrent localement avec possibilité de crises anoxiques exceptionnelles. La diversité est satisfaisante.

<u>État Moyen</u>: les espèces climax ne dominent plus mais sont présentes, les espèces opportunistes prolifèrent localement avec des crises anoxiques locales mais récurrentes. La diversité est satisfaisante.

<u>État Médiocre</u>: les espèces climax sont très faiblement représentées, les espèces opportunistes ne dominent pas constamment, mais peuvent produire des anoxies générales. La diversité est réduite.

<u>État Mauvais</u>: les espèces climax sont absentes, seules les espèces opportunistes peuvent proliférer avec des crises anoxiques générales et récurrentes. La diversité est faible.

Quand le recouvrement végétal est inférieur à 5%, on considère que l'on ne peut pas faire le diagnostic de l'état de qualité des macrophytes.

3.6. Macrofaune benthique de substrat meuble

3.6.1. Localisation des sites de prélèvements

3.6.1.1. Eaux côtières

Chaque masse d'eau retenue dans le district hydrographique (3 en Languedoc-Roussillon et 7 en région PACA) est représentée par une ou deux stations. Celles-ci ont été choisies sur les critères fixés par la DCE lors des groupes de travail, *i.e.* à moins d'un mile des côtes et situées entre 20 et 30 m de profondeur.

Le suivi de la macrofaune benthique porte sur 26 stations : 7 en région Languedoc-Roussillon et 19 en région PACA (Tableau 20).

Tableau 20 : Liste et localisation des stations prélevées pour le benthos en eaux côtières

Code	Nom de la masse d'eau	Nom de la station
		Cerbère
FRDC01	Espagne – Racou plage	Banyuls
		Collioure
FRDC02a	Racou plage – Aude	Leucate
1 NDC02a	Nacou plage – Adde	Gruissan
FRDC02c	Cap d'Agde	Agde W
1 NDC02C	Cap d Ague	Agde E
		Espiguette
FRDC03	Delta du Rhône	Beauduc
		Faraman
FRDC04	Golfe de Fos	Fos
T NDC04	Golle de l'Os	Carteau
FRDC05	Côte bleue	Carry
FRDC06b	Endoume – Croistte - Frioul	Frioul
FRDC07a	lles Marseille - Cortiou	lle Marie
TRDCora	lies Marseille - Cortiou	lle Jarre
FRDC07b	Cap Croisette – Bec Aigle	Cassis
FRDC07e	llot Pierre plane- Point Gaou	lle des Embiez
FRDC07g	Cepet - Carqueiranne	Toulon
		lle du Levant
FRDC07h	lles du soleil	Porquerolles
		Lavandou
FRDC08d	Ouest Fréjus- Pte Galère	St Raphael
FRDC09a	Cap Antibes – Sud port Antibes	Antibes S
FRDC09b	Sud port Antibes-Port commerce de	Antibes N
FKDC090	Nice	Nice

3.6.1.2. Eaux de transition

Le suivi de la macrofaune benthique porte sur 20 stations dans 9 lagunes (Tableau 21).

Tableau 21 : Liste et localisation des stations prélevées pour le benthos en lagunes

Code	Nom de la masse d'eau	Nom de la station
FRDT 02	Salses Leucate	Leucate Sud
FRDT 02	Saises Leucate	Leucate Nord
FRDT 03	La Palme	La Palme Sud
FRD1 03	La Faiille	La Palme Nord
		Bages Nord BGN
FRDT 04	Bages Sigean	Bages milieu BGM
		Bages Sud BGS
FRDT 09	Bagnas	Bagnas
		Pisse Saume
FRDT 10	Thau	Thau Ouest
		Thau Est
FRDT 11a	Or	Or Ouest
TRDITIA	Oi	Or Est
		Arnel
		Prévost Ouest
FRDT 11b	Palavasiens	Prévost Est
FRUITIO	Falavasieris	Méjean Ouest
		Méjean Est
		Grec
FRDT 14d	Vaccarès	Vaccarès
FRDT 15a	Berre	Berre Nord
ו ווטו וטמ	Delle	Berre Sud

3.6.2. Protocole de prélèvement

Parallèlement aux prélèvements de sédiments dédiés à la macrofaune benthique de substrat meuble, un échantillon de sédiment a été prélevé dans des conditions similaires pour chacune des stations (eaux côtières et de transition), afin de procéder aux analyses de répartition granulométrique et de teneurs des sédiments en matière organique et nutriments.

3.6.2.1. Eaux côtières

Le sédiment est prélevé à l'aide d'une benne Van Veen en acier inoxydable, manœuvrée à partir d'un bateau (surface prélevée de 0,1 m²). Cinq prélèvements sont réalisés pour chaque station, soit une surface totale échantillonnée de 0,5 m². (Figure 17)

Le sédiment fait l'objet d'un premier tamisage sur le bateau (tamis en acier inoxydable de maille 1 mm). Le refus du tamis est ensuite transvasé dans un sac plastique dans lequel est ajouté un mélange de formaldéhyde en solution aqueuse à 5% dilué dans de l'eau de mer. Une pincée de colorant (Rose Bengale) est ajoutée à l'échantillon, de manière à colorer les animaux vivants et à faciliter le tri ultérieur.

3.6.2.2. Eaux de transition

Le benthos est prélevé sur trois sous-stations d'échantillonnage par station, les sousstations étant distantes de quelques dizaines de mètres. Les prélèvements sont réalisés à l'aide d'une benne Eckmann-Birge, qui permet l'échantillonnage d'une surface de sédiment de 0,0225 m². A chaque sous-station, quatre répliquats (soit quatre bennes), séparées de quelques mètres l'un de l'autre, sont prélevées. Ainsi la surface échantillonnée est de 0,09 m² par sous-station et 0.27 m² par station.

Les sédiments prélevés pour l'analyse de la macrofaune benthique sont tamisés à maille de 1 mm. Le refus du tamis contenant la faune benthique mélangée à des particules grossières, des débris coquilliers et autres fragments est conditionné dans des sacs plastiques étanches dans lesquels sont ajoutées une solution aqueuse de formaldéhyde (diluée à 5% dans de l'eau de mer) ainsi qu'une pincée de colorant (Rose Bengale) destinée à mettre en valeur la matière vivante et faciliter le tri.

PRÉLÈVEMENTS DE SUBSTRAT MEUBLE ET DE LA FAUNE BENTHIQUE

Figure 17. Prélèvements de substrat meuble et de la faune benthique dans les eaux côtières (Créocean, 2007)

3.6.3. Analyse des données

Les données sédimentaires et faunistiques ont été analysées selon le même principe, que ce soit pour les eaux côtières ou de transition. Le tri et l'identification des échantillons ont été réalisés par le laboratoire Arago de Banyuls, les analyses par l'Institut Pasteur de Lille (granulométrie, nutriments, matière organique) pour les eaux côtières et le CIRAD de Montpellier pour les eaux de transition, Créocean ayant pris en charge le traitement et l'interprétation des données.

3.6.3.1. Le sédiment

Le laboratoire détermine pour chaque échantillon de sédiment reçu :

- Le Carbone Organique Total;
- Le Phosphore Total;
- L'Azote Kjeldahl;
- La Granulométrie, avec la proportion de chaque fraction.

Le sédiment de chaque station a été classé en fonction de son pourcentage de fraction fine, selon la méthode de classification d'Ibouilly.

Les seuils d'enrichissement en matière organique, en azote total et en phosphore total pour les milieux lagunaires ou milieux côtiers, sont fixés par le "Système d'aide à l'interprétation des données benthiques en milieu marin et lagunaire" (IARE, Agence de l'eau Rhône Méditerranée Corse, 1998).

3.6.3.2. La Macrofaune benthique

Le macrobenthos est d'abord séparé des débris. En laboratoire, les animaux sont dénombrés et déterminés sous la loupe binoculaire jusqu'au niveau spécifique. Pour chaque espèce, sont calculées l'abondance et la biomasse.

L'évaluation de la structure générale du peuplement est réalisée à partir du calcul de plusieurs indices : densité par espèce, densité totale par m², richesse spécifique, indices de diversité (Shannon-Wiener, Equitabilité).

En accord avec les groupes de travail de la DCE, cette évaluation est complétée par la caractérisation des grands types de peuplements (biocénoses) et des espèces indicatrices de perturbation.

Enfin, l'approche fonctionnelle est privilégiée. Elle s'appuie, d'une part sur la connaissance des modes d'alimentation (Indice Trophique) et, d'autre part, sur la polluo-sensibilité des espèces (AMBI).

A partir de ces différents indices et conformément aux travaux du groupe d'intercalibration MED-GIG, un nouvel indice est calculé : le M-AMBI basé sur les indices d'AMBI, de Shannon et la richesse spécifique. Les méthodes de calcul des différents indices sont reportées en annexe (7.9).

3.6.4. Classification

3.6.4.1. Eaux côtières

Les limites de classe pour l'indice M-AMBI sont présentées dans le Tableau 22. Ils ont été retenus au cours des travaux du MED-GIG.

Tableau 22 : Seuils de classe pour le M-AMBI, en eaux côtières

Qualité bentho	3	Très bon		Bon		Moyen		Médiocre		Mauvais	
M-AMBI	1		0.85		0.55		0.40		0.20		0

3.6.4.2. Eaux de transition

Les limites de classe pour l'indice M-AMBI sont présentées dans le Tableau 23.

Tableau 23. Seuils de classe pour l'indice M-AMBI, en eaux de transition

Qualité benthos		Très bon		Bon		Moyen		Médiocre		Mauvais	
M-AMBI	1		0.80		0.55		0.35		0.20		0

Ces limites sont provisoires et devront être validées d'ici la prochaine campagne de surveillance (2009), notamment en fonction des résultats de l'étude sur la typologie des lagunes.

3.6.4.3. Granulométrie (paramètre d'appui)

La classification est basée sur le taux de particules fines (Tableau 24).

Tableau 24 : Seuils de classe pour la fraction fine (en%)

Qualité Granulométrie		Très bon		Bon		Moyen		Médiocre		Mauvais	
Classification granulométrique		Sables purs		Sables moyennemen t envasés		Sédiments très envasés à dominance de sables		Sédiments très envasés à dominance de vases		Vases pures	
% de fraction fine	0		10		40		60		80		100

4. Résultats

4.1. Evaluation de la qualité chimique

Le Tableau 25 présente les résultats obtenus dans la matière vivante pour les molécules dont les concentrations dépassent la limite de détection analytique pour au moins une station.

Tableau 25 : Concentrations en contaminants des annexes IX et X de la DCE dans les échantillons RINBIO retenus au titre du contrôle de surveillance, en mg/kg de poids sec (p.s.) de chair pour les métaux, en µg/kg de poids sec (p.s.) de chair pour les molécules organiques.

Nom_station	Cadmium (mg/kg p.s)	Mercure (mg/kg p.s)	Nickel (mg/kg p.s)	Plomb (g/kg p.s)	SDDTs (µg/kg p.s)	SHCHs (µg/kg p.s)	Naphtalène (µg/kg p.s)	Fluoranthène (µg/kg p.s)	Benzo (b) fluoranthène (µg/kg p.s)	Benzo (k) fluoranthène (µg/kg p.s)	Benzo (a) pyrène (µg/kg p.s)	Edosulfan alpha (µg/kg p.s)	Dieldrine (µg/kg p.s)	Endrine (µg/kg p.s)	Endosulfan beta (µg/kg p.s)	Tributylétain (µg/kg p.s)	4-para-nonylphenol (µg/kg p.s)
DCE4 Etg Leucate	0,73	0,05	2,30	0,60	6,10	3,40	4,80	2,90	1,20	0,50	1,90	0,50	0,50	0,50	2,20	3,70	156,00
DCE5 Etg La Palme	1,10	0,09	1,90	1,10	9,30	1,50	0,50	3,50	0,50	0,50	0,50	1,60	0,50	0,50	1,00	1,00	368,00
DCE6 Etg Bages Sud	2,04	0,03	2,50	1,10	18,80	1,50	0,50	2,10	0,50	0,50	1,10	1,80	0,50	0,50	1,00	8,90	176,00
DCE12 Etg Thau sud	1,01	0,07	0,80	1,10	9,00	2,20	4,70	3,10	0,50	0,50	2,40	3,50	0,50	0,50	1,00	2,00	240,00
DCE 14 Etg prevost	0,62	0,06	1,30	0,90	47,60	1,50	0,50	5,70	1,70	0,50	1,00	2,50		2,30	4,50	15,40	111,00
DCE15 Etg. Mejean ouest	0,48	0,08	0,70	0,90	18,30	1,50	0,50	1,10		0,50	2,00	0,50	0,50	0,50	6,40	1,00	129,00
DCE16 Etg de l'Or est	1,88	0,13	2,10	1,80	3,50	1,50	0,50	1,60		0,50	2,30	0,50	0,50	3,90	1,40	2,60	50,00
DCE17 Etg Vaccares	0,68	0,06	2,00	0,60	2,50	1,50	0,50	4,80		0,50	1,90	2,00	0,50	4,40	3,30	1,00	50,00
DCE21 Etg. Berre sud	0,75	0,05	1,60	0,80	10,00	1,50	0,50	3,00	1,40	0,50	2,20	4,30	0,50	0,50	0,50	3,10	50,00
DCE1 Banyuls	0,76	0,08	1,10	1,00	8,30	3,40	0,50	2,10		0,50	1,50	0,50	0,50	0,50	0,50	4,80	143,00
DCE2 Port la nouvelle	0,67	0,07	0,80	0,90	14,20	4,50	5,00	5,10		0,50	2,60	0,50	0,50	1,60	0,50	1,00	132,00
DCE9 Agde 2	0,42	0,08	0,60	0,50	9,60	1,50	0,50	2,10		0,50	0,50	0,50	0,50	0,50	0,50	3,30	152,00
DCE18 Stes maries	0,53	0,03	0,70	0,70	12,80	1,50	0,50	3,70	2,00	0,50	2,20	0,50	0,50	1,00	3,10	1,00	50,00
DCE19 Emb. Rhone	0,55	0,03	0,60	0,70	21,20	5,60	0,50	2,40	0,50	0,50	4,70	0,50	0,50	0,50	0,50	2,00	50,00
DCE20 Ponteau	0,78	0,08	0,90	1,10	14,90	1,50	2,20	3,90	0,50	0,50	2,10	0,50	0,50	2,50	2,90	6,40	50,00
DCE22 Carry	0,75	0,07	0,60	1,40	3,40	1,50	1,80	1,40	0,50	0,50	4,30	2,40	0,50	1,00	8,60	7,40	50,00
DCE23 Marseille sud	0,78	0,07	0,80	1,30	2,60	2,00	0,50	1,10	0,50	0,50	0,50	0,50	1,10	0,50	2,40	8,70	50,00
DCE24 lle plane	0,98	0,06	1,10	1,30	8,70	7,80	0,50	2,00	0,50	0,50	2,20	1,40	0,50	1,00	6,50	2,90	50,00
DCE43 Cap Canaille	0,91	0,06	0,70	1,20	7,80	2,30	0,50	1,70	0,50	0,50	1,20	0,50	0,50	0,50	2,10	6,90	121,00
DCE25 Ile Embiez	0,99	0,06	0,80	1,20	2,30	1,50	0,50	1,50	1,20	0,50	1,70	0,50	0,50	0,50	3,20	6,20	50,00
DCE26 Toulon gde rade	0,74	0,11	0,70	1,80	7,10	1,50	0,50	1,80		0,50	5,20	0,50	0,50	0,50	3,80	50,00 7,40	50,00
DCE27 Ile Levant	1,37	0,08	1,40	1,50	3,00	1,50	0,50	2,20	0,50	0,50	2,60	0,50	0,50	0,50	3,00		50,00
DCE28 Frejus Est	1,05	0,10	0,90	1,40	6,00	5,40	0,50	3,60	0,50	0,50	2,60	0,50	0,50	0,50	0,50	15,30	140,00
DCE30 Port de Nice	0,88	0,08	0,80	1,10	7,20	5,90	3,60	2,50	0,50	0,50	1,70	0,50	0,50	0,50	3,70	40,10	50,00
DCE29 Antibes 2	1,01	0,08	0,90	1,40	3,90	5,30	1,50	3,00	0,50	0,50	2,80	0,50	0,50	0,50	1,30	41,00	103,00

La conversion des données en concentration dans l'eau a été réalisée pour chaque molécule en utilisant les formules de conversion décrites dans le paragraphe 3.1.3.

La conversion de la limite de détection a été réalisée avec ces mêmes formules, en prenant une valeur du rapport poids humide de chair/poids sec de chair de 5. Elle représente la moyenne de ce rapport pour l'ensemble des stations échantillonnées. Les résultats complets de ces données sont présentés en annexe (7.4).

Après traitement, on constate que les résultats supérieurs à la NQE ne concernent que les composés du Tributylétain (TBT), l'Endosulfan et le Pentachlorobenzène (Tableau 26). A noter que, pour ce dernier, les traitements ont été effectués sur la base de résultats dans la chair de moules inférieurs à la limite de détection analytique.

Tableau 26 : Campagne RINBIO 2006 : Conversion des concentrations dans le biota en concentrations dans l'eau. BCF : facteur de bioaccumulation, NQE : Norme de Qualité Environnementale en $\mu g/L$ (en jaune les concentrations dépassant les NQE)

Masse d'Eau	Nom_station	Endosulfan (µg/I)	Pentachlorobenzène (µg/l)	⊗ Tributylétain (µg/I)		
	N° UE - DCE	14	26			
	N°CAS	115-29-7	608-93-5	688-73-3		
	Log Kow	4,74	5,18	3,54		
	BCF	600	2000	11400		
	NQE	0,0005	0,0007	0,0002		
	OAD EL I	0.004047	0.000000	0.000004		
FRDT02	04B Etg Leucate	0,001047	0,000982	0,000064		
FRDT03	05A Etg La Palme	0,000765	0,000883	0,000031		
FRDT04	06A Etg Bages Sud	0,000969	0,001038	0,000162		
FRDT10	09A Etg Thau sud	0,001732	0,001154	0,000041		
FRDT11b	11B Etg prevost	0,002574	0,001103	0,000298		
FRDT11b	12 I Etg. Mejean ouest	0,002953	0,001197	0,000042		
FRDT11a	12E Etg de l'Or est	0,000571	0,000713	0,000033		
FRDT14d	14A Etg Vaccares	0,002083	0,001179	0,000041		
FRDT15a	17C Etg. Berre sud	0,001638	0,000927	0,000050		
PPP 004	04.400.0	0.000007	0.004000	0.000007		
FRDC01	01A03 Banyuls	0,000687	0,001030	0,000087		
FRDC02a	07A Port la nouvelle	0,000831	0,001246	0,000044		
FRDC02c	07G Agde 2	0,000912	0,001368	0,000079		
FRDC03	15A Stes maries	0,001734	0,001269	0,000045		
FRDC03	15B Emb. Rhone	0,000875	0,001312	0,000046		
FRDC04	16B Ponteau	0,001486	0,001143	0,000128		
FRDC05	18A Carry	0,004063	0,001108	0,000144		
FRDC06b	19B Marseille sud	0,001200	0,001059	0,000162		
FRDC07a	20C lle plane	0,002255	0,000856	0,000044		
FRDC075	21F Cap Canaille 21E lle Embiez	0,000942	0,000912	0,000110		
FRDC07e		0,001422	0,001016	0,000110		
FRDC07g FRDC07h	22B Toulon gde rade 23D lle Levant	0,001524 0,001231	0,000952 0,000924	0, <mark>000835</mark> 0,000120		
FRDC07h FRDC08d	27B Frejus Est	0,001231	0,000924	0,000120		
FRDC08a FRDC09a	29E Antibes 2	0,000629	0,000944	0,000253		
FRDC09a FRDC09b	29G Port de Nice	0,000696	0,000985	0,000693		
LKT)C030	236 Full de Nice	0,001043	0,000303	0,000033		

Pour l'Endosulfan et le Pentachlorobenzène, la NQE est dépassée sur toutes les stations, mais ce résultat n'est pas significatif puisque les limites de détection analytique pour ces deux composés sont supérieures à 30 % de la valeur de la NQE. Pour les composés du TBT ce sont les stations Prévost, Toulon, Fréjus, Port de Nice, Antibes qui dépassent la valeur de la NQE.

Ce premier constat montre que pour tous les contaminants, à l'exception de l'Endosulfan, du Pentachlorobenzène et du TBT, aucune station ne présente des valeurs supérieures aux NQE *provisoires* édictées par la circulaire 2007/23 du 7 mai 2007 du MEDAD. D'autre part les seuils de détection analytiques de ces molécules dans la chair de moule sont acceptables.

Pour les trois molécules qui posent problème, un certain nombre de points doivent être approfondis et discutés pour améliorer cette première évaluation.

- ❖ Il existe une grande hétérogénéité entre les BCF utilisés pour convertir les données obtenues dans la chair de moule en concentrations dans l'eau. En effet, tandis que certaines valeurs semblent appropriées à la conversion (valeurs issues d'expérimentation sur des moules), d'autres valeurs sont issues d'expérimentation sur d'autres espèces de bivalves filtreurs (huître, macome) ou même d'autres familles d'invertébrés marins que les mollusques.
- L'utilisation des formules de calcul pour obtenir la valeur du BCF à partir du log Kow, peut engendrer dans certains cas un écart très important entre la valeur calculée et la valeur expérimentale. L'utilisation de l'une ou de l'autre valeur conduit à des résultats très différents par comparaison à la NQE. Cet écart est souvent suffisant pour induire un classement de la masse d'eau.
- 1) Pour le Pentachlorobenzène, tous les résultats obtenus dans les moules sont inférieurs à la limite de détection analytique. Par convention, la valeur retenue est alors cette limite, qui convertie en $\mu g/l$ est supérieure à 30 % de la valeur de la NQE. La comparaison des concentrations obtenues et de la NQE n'est donc pas possible selon les termes de l'arrêté. Précisons que le BCF utilisé est de 2000, obtenu expérimentalement sur des bivalves dont l'espèce n'est pas précisée. A noter que le calcul du BCF à partir du Log Kow donne une valeur de 5000, qui utilisée pour les conversions, donne pour toutes les stations des résultats inférieurs à la NQE. Dans les deux cas, la limite analytique est toujours supérieure à 30 % de la NQE.

Compte tenu de ces éléments, ces résultats ne peuvent pas être pris en compte et il est recommandé :

- ❖ d'abaisser la limite de détection de la méthode analytique,
- ❖ et de préciser l'origine et la nature du BCF expérimental.
- 2) Pour l'Endosulfan, le BCF utilisé est de 600. Il a été obtenu expérimentalement sur des moules. Par contre, on ne sait pas quel isomère a été utilisé, y compris pour l'évaluation de la NQE. Si on calcule le BCF à partir du Log Kow, la valeur obtenue est de 2000. En sommant les différents isomères analysés, on obtient des valeurs inférieures à la NQE et la limite de détection analytique convertie en $\mu g/l$ est satisfaisante.

A la différence du Pentachlorobenzène, il existe cependant beaucoup de stations qui donnent des résultats supérieurs à la limite de détection analytique pour les deux isomères. Si on élimine les valeurs inférieures à la limite de détection analytique, il reste toujours des stations qui seront classées en mauvais état en utilisant le BCF expérimental. Nous recommandons cependant pour cette molécule de ne pas déclasser les masses d'eau pour lesquelles l'un ou l'autre des isomères dépasse la NQE en utilisant le BCF expérimental, compte tenu du problème lié à la limite de détection analytique. D'autre part, il est nécessaire d'approfondir à quel(s) isomère(s) correspondent le BCF et la NQE avant de déclasser les stations pour lesquelles la limite de détection analytique est dépassée.

3) Le constat est totalement différent pour le TBT. Seules quelques stations présentent des résultats supérieurs à la NQE calculés à partir de mesures largement supérieures à la limite de détection analytique. Le BCF utilisé est expérimental, obtenu avec des huîtres, il est de 11400. A noter qu'un BCF calculé à partir du Log Kow donnerait un BCF de 127 ce qui rendrait toutes les stations supérieures à la NQE.

Nous recommandons donc de classer en l'état, en s'appuyant sur ce BCF expérimental mais en ne retenant pas les stations de Fréjus et du Prévost. En effet, en utilisant le BCF expérimental, le dépassement de la NQE n'est que de 1.10⁻⁵ ce qui est négligeable compte tenu des nombreuses incertitudes de la méthode de conversion. Il sera en plus nécessaire d'entreprendre une recherche bibliographique plus approfondie pour déterminer un BCF dans les moules.

Benzo(ghi)+Indéno(1,2,3) (pg/l) (Fg <u>§</u> Diethylhezylphtalate(DEHP) Benzo(b)fluo+Benzo(k)fluo Hezachlorobutadiène (µg/l) Pentachlorobenzène (µgłl) Pentabromodiphenyléther Ē Pentachlorophenol (µg/l) f-para-nonylphenol (µg/l) f-tert-octylphénol (µg/l) C10-C13 Chloroalcanes d'Eau Nom station 1,2,4 Trichlorobenzène Hezachorobenzène Nonglphenols (µg/l) Fluoranthène (µg/l) Chlorpyrifos (µg/l) Anthracène (µg/l) Endosulfan (µg/l) Naphtalène (µg/I) Chlorfenvinphos Trifluraline (µg/l) Cadmium (µg/l) Dieldrine (µg/l) Mercure (µg/l) (Fg4) sodrine (µg/l) Aldrine (µg/l) Nickel (µg/I) tylétain (Plomb (µg/l) 01A03 Banyuls 07A Port la nouvelle 07G Agde 2 FRDC02d FRDC03 FRDC03 15B Emb. Rho 16B Ponteau FRDC04 FRDC05 FRDC06b 18A Carry 19B Marseille suc FRDC07a FRDC07b 20C lle plane 21F Cap Cana 21E lle Embiez FRDC07e 23D lle Leva FRDC08d 27B Frejus Est 04B Etg Leucate FRDT02 FRDT03 06A Etg Bages Suc FRDT04 09A Etg Thau sud 11B Etg prevost

La synthèse de cette étude est présentée dans le Tableau 27.

Tableau 27 : Etat de qualité chimique des eaux côtières et de transition (en rouge le mauvais état chimique)

La carte en annexe (7.10) synthétise les résultats qui constituent une première approche de l'état chimique pour les molécules bioaccumulables.

FRDT11b

FRDT11b

12 l Etg. Mejean ouest 12E Etg de l'Or est

Commentaires et recommandations

De nombreuses améliorations méthodologiques sont attendues pour optimiser l'évaluation de l'état chimique des masses d'eaux, notamment en ce qui concerne la conversion des concentrations entre le biote et l'eau.

- 1) Il serait ainsi particulièrement judicieux de revoir la validation et la pertinence des BCF utilisés dans les conversions eau-biote, en recommandant l'utilisation de BCF expérimentaux dans la moule.
- 2) Il semble également pertinent d'approfondir la question de la formule proposée pour le calcul du BCF à partir du coefficient de partition octanol-eau, lorsque les données expérimentales ne sont pas disponibles. En effet, cette formule est préconisée dans le TGD1 dans le contexte prospectif de l'évaluation des risques et non de l'évaluation de la qualité du milieu. En conséquence, elle correspond à l'application du cas le plus défavorable en prenant un facteur de bioconcentration pour le poisson. Or il est avéré que la bioconcentration des substances est très différente, selon les espèces, notamment lorsque le mode de nutrition diffère. Les mollusques étant des organismes filtreurs, la relation entre Log Kow et BCF est probablement significativement différente pour ces organismes.

Un modèle de bioaccumulation des métaux traces et de quelques molécules organiques dans la moule a été développé dans un travail de thèse (Casas, 2005 ; Casas & Bacher, 2006) et un post-doctorat avec le soutien de l'Agence Rhône Méditerranée et Corse et du MEDAD. Ce modèle de bioaccumulation a été élaboré en couplant un modèle de croissance à base énergétique à un modèle simple d'accumulation. En plus de traiter de l'accumulation des xénobiotiques à partir de la voie dissoute et particulaire, le modèle tient compte de la biologie de l'individu et des conditions nutritives et physicochimiques du milieu. Reliant par une méthode explicative les concentrations dans l'organisme à celles du milieu, ce modèle permet d'évaluer la concentration effective dans l'échantillon en normalisant à un état physiologique standard permettant ainsi des comparaisons inter-sites. L'utilisation d'un tel outil représente donc une possibilité de rapprocher avec plus de précision les concentrations dans les moules et les concentrations dans l'eau. Il sera prochainement mis en routine pour les métaux traces, les organochlorés et les HAP. La généralisation de ce modèle à l'ensemble des contaminants bioaccumulables des annexes IX et X de la DCE devrait être un apport important pour ce type d'évaluation.

- 3) Une attention particulière devra être apportée aux limites de détection analytiques pour lesquelles certains seuils sont encore relativement élevés, notamment l'Endosulfan et le Pentachlorobenzène, pour les mesures dans une matrice organique.
- 4) Il est également important de considérer que les NQE utilisées ont été édictées de manière provisoire, dans l'attente d'une Directive fille de la DCE qui devrait établir de manière définitive les NQE pour ces 41 substances. Les éventuelles modifications des NQE dans ce texte pourraient avoir des répercussions sur le classement des masses

¹ TGD : Technical Guidance Document est un manuel technique d'évaluation du risque chimique commun à l'Union Européenne, dont la dernière version est téléchargeable sur le site http://ecb.jrc.it/tgdoc

d'eau. De plus, il est question d'ajouter des NQE biote en µg.kg⁻¹ de poids frais, ce qui évitera l'opération délicate de conversion entre eau et biote.

4.2. Contribution à l'évaluation de la qualité écologique : Eaux côtières

4.2.1. Hydrologie

Le paramètre « hydrologie » a été traité à titre rétroactif sur certaines stations compte tenu des instructions de la circulaire DCE 2007/20.

Dans cette étude, le seul paramètre hydrologique d'appui mesuré en eaux côtières est la teneur en oxygène dissous. Quelques stations sont documentées pour ce paramètre, en particulier les stations concernées par le REPHY ou le SOMLIT, le nombre de mesures est donc très variable d'une station à l'autre. Le classement des données est présenté dans le Tableau 28. Le détail est fourni en annexe (7.5.3).

Tableau 28 : Classification du descripteur Hydrologie (oxygène dissous) des masses d'eaux côtières

ME	Nom ME	Nom station	Origine données	Nombre données	P10 *(O2)	qualité hydrologie
FRDC01	Espagne - Racou plage	Banyuls Sola	SOMLIT	15	4.790	2
FRDC02a	Racou pl Emb. Aude	Gruissan	REPHY	3	8.447	1
FRDC02c	Cap d'Agde	Agde	ADENA	12	90.680	1
FRDC03	Estuaire du Rhône	Courbe	REPHY	4	208.920	1
FRDC04	Golfe de Fos	Anse Carteau 2	REPHY	16	78.272	1
FRDC06b	Marseille - Frioul	Endoume	SOMLIT	6	3.336	2
FRDC07g	Cepet - Carqueiranne	Toulon	REPHY	1	177.625	1
FRDC09d	Rade Villefranche	Villefranche B	SOMLIT	6	4.810	2

 $[^]st$ Données P10 exprimées en mg. $L^{ extstyle{-}1}$

Les huit stations échantillonnées sont de « bonne » à « très bonne » qualité, malgré un intervalle de valeurs de Percentile 10 assez large. Les eaux situées dans l'estuaire du Rhône, dans le Golfe de Fos, aux Cap de St Mandrier et d'Agde, sont sursaturées en oxygène dissous, contrairement aux stations d'Endoume, Banyuls et de Villefranche.

4.2.2. Phytoplancton

La DCE recommande de réaliser le traitement des données de phytoplancton (pour les paramètres biomasse, abondance et composition) sur toute la durée du plan de gestion (soit 6 ans). Grâce au réseau REPHY, quelques stations ont pu être analysées sur 6 années antérieures. Lorsque disponibles, les données de l'année 2006 et des années consécutives 2001-2006 ont été renseignées pour pouvoir être comparées.

Rappelons que **seul le paramètre « Biomasse » a un caractère obligatoire** pour l'évaluation de l'indicateur Phytoplancton. Les données des paramètres « Abondance » et « Composition » ont été reportées dans ce paragraphe pour une simulation de résultats.

4.2.2.1. Biomasse

Le traitement des données synthétise les informations recueillies pour les 15 stations DCE sur une année complète allant de février 2006 à janvier 2007, et, lorsque les données sont disponibles, sur la période 2001 – 2006.

Les résultats des calculs de P90 effectués sur l'ensemble des stations, fonction de la typologie des masses d'eau, sont présentés dans le Tableau 29. Le détail est reporté en annexe (7.6.1).

Tableau 29 : Classification du descripteur Biomasse (chlorophylle-a) pour l'année 2006 pour les eaux côtières et comparaison avec les données acquises sur la période 2001-2006.

			Anne	ée 2006
ME	Type ME	Nom masse d'eau / STATION	nb données	P90 & Qualité
FRDC 01	3W	Espagne -Racou plage / BANYULS SOLA	45	1.2
FRDC 02a	2A	Racou plage - Emb. Aude / BARCARES	22	1,5
FRDC 02c	2A	Cap d'Agde / AGDE	28	2.0
FRDC 03	1	Delta du Rhône / COURBE	9	3.9
FRDC 03	l '	Delta du Rhône / ROUSTY	11	2.0
FRDC 04	1	Golfe de Fos / ANSE DE CARTEAU 2	26	1.2
FRDC 05	2A	Cote bleue / (18A) CARRY	5	1.4
FRDC 06b	3W	Cap Croisette et îles du Frioul / FRIOUL	25	1.2
FRDC 07b	3W	Cap croisette - Bec Aigle / CASSIS	12	0.6
FRDC 07e	3W	Pierreplane - Ile du Gaou / (21E) ILE EMBIEZ	12	0.4
FRDC 07g	3W	Cepet - Carqueiranne/ (22B) TOULON GD RADE	28	0.7
FRDC 07h	3W	lles du Soleil / PORT CROS	5	0.2
FRDC 08d	3W	Ouest Fréjus - Pointe Galère / (27B) FREJUS EST	11	0.4
FRDC 09d	3W	Rade Villefranche / VILLEFRANCHE point B	49	0.6
FRDT 20	estuaire	Grand Rhône	12	2.2

Années 2001-2006							
nb	P90 &						
données	Qualité						
65	2,128						
92	1,788						

Nbmes : nombre de mesures

Les résultats obtenus sur les eaux côtières confirment que les niveaux de chlorophylle-a sont différents sur les deux secteurs Ouest et Est de la Méditerranée, ce qui justifie l'application de grilles différentes (pour les types 2A et 3W).

Pour 2006, sur les 14 masses d'eau représentées, **12 masses sont classées en très bon état et 2 en bon état**. Ce résultat est à prendre avec précaution. En effet, comme indiqué en début de chapitre, l'analyse n'a porté que sur une année au lieu des six recommandées.

Le traitement des résultats a mis en évidence des différences de classement en fonction des simulations réalisées. En effet, sur les masses d'eau retenues comme site de référence, il a été possible de réaliser des simulations selon que le P90 ait été calculé avec l'ensemble des données, ou avec une seule valeur de chlorophylle-a mensuelle retenue (première donnée de chaque mois, donnée la moins élevée de chaque mois, donnée la plus élevée de chaque mois).

Lorsque la première valeur de chaque mois est retenue, 2 stations sont classées en bon état, 14 en très bon état. Si la plus faible valeur de chaque mois est considérée, toutes les masses d'eau étudiées sont classées en très bon état. Si les plus fortes valeurs de chaque mois sont prises en compte, 12 stations sont en très bon état, 4 en bon état.

La variabilité des valeurs au cours d'un mois est à l'origine de ce phénomène. On remarque qu'elle reste contenue aux bornes des classes Très bon et Bon.

Le Tableau 29 montre également que lorsqu'il a été possible de traiter 6 années consécutives de données (2 stations), les masses d'eau ne sont pas déclassées au delà des bornes du Bon Etat.

4.2.2.2. Abondance

Les données sur l'abondance ont été recueillies sur 13 stations DCE : 10 stations ont été mises en place en 2006, 3 autres correspondent à des points du réseau REPHY. Pour ces dernières, les données ont été extraites et traitées sur 6 ans.

Le Tableau 30 reprend les données extraites des stations REPHY depuis 2001, et les données des stations DCE échantillonnées en 2006. Le détail est fourni en annexe (7.6.2).

Tableau 30 : Classification du descripteur abondance des eaux côtières pour l'année 2006 et comparaison avec les données acquises sur la période 2001-2006

			Année 2006			Années 2001-2006		
code ME	type ME	nom ME / nom STATION	nbmes	% bloom	classe	nbmes	% bloom	classe
FRDC01	3W	Espagne -Racou plage / BANYULS SOLA	7	28,571	2			
FRDC02a	2A	Racou plage - Emb. Aude / GRUISSAN				85	31,764	2
FRDC02c	2A	Cap d'Agde / AGDE	32	37,5	2			
FRDC03	1	Estuaire du Rhône / ROUSTY et COURBE	36	27,777	2			
FRDC04	1	Golfe de Fos / ANSE DE CARTEAU 2				59	35,593	2
FRDC05	2A	Cote bleue / (18A) CARRY	5	0	1			
FRDC06b	3W	Pte Endoume - Cap Croisette îles Frioul / ENDOUME	10	0	1			
FRDC07b	3W	Cap croisette - Bec Aigle / CASSIS	9	0	1			
FRDC07e	3W	Pierreplane - Ile du Gaou / (21E) ILE EMBIEZ	10	0	1			
FRDC07g	3W	Cap Cepet - Cap de Carqueiranne / (22B) TOULON	17	17,647	1			
FRDC07h	3W	Iles du Soleil / PORT CROS	5	0	1			
FRDC08d	3W	Ouest Fréjus - Pointe Galère / (27B) FREJUS EST	11	0	1			
FRDC09c	3W	Port Comm. Nice - Cap Ferrat / VILLEFRANCHE				69	2,898	1

ME: Masse d'Eau

Les résultats d'abondance phytoplanctonique séparent également nettement les deux écorégions (LR et PACA). Les masses d'eau de la région Languedoc-Roussillon et de l'estuaire du Rhône sont de bonne qualité, avec des pourcentages de blooms allant de 28 à 35%. En région PACA, les masses d'eau sont de très bonne qualité avec une métrique n'excédant pas 17 %.

4.2.2.3. Composition

Les données sur la composition ont été recueillies sur 14 stations DCE (7.6.4) : 10 stations ont été mises en place en 2006, 4 autres correspondent à des stations REPHY. Pour ces dernières, les données ont été extraites et traitées sur 6 ans.

Deux limites de classes, proposées au niveau national, ont été testées compte tenu de la variabilité de ce descripteur essentiellement en Manche et en Atlantique (20-40-70-90 et 10-17-35-80). Les traitements ont conduit à des classements identiques quelle que soit la grille utilisée (Tableau 31).

Tableau 31 : Classification du descripteur « composition » des eaux côtières pour l'année 2006 et comparaison avec les données acquises sur la période 2001 à 2006.

		année 2006			années 2001 - 2006		
ME	nom ME	nb données	%bloom	classe	nb données	%bloom	classe
FRDC01	Espagne -Racou plage / BANYULS SOLA	7	0	1			
FRDC02a	Racou plage - Emb. Aude / GRUISSAN				85	1,176	1
FRDC02c	Cap d'Agde / AGDE	12	0	1			
FRDC02f	Frontignan - Pointe de l'Espiguette	16	0	1			
FRDC03	Estuaire du Rhône				36	0	1
FRDC04	Golfe de Fos / ANSE DE CARTEAU 2				59	3,390	1
FRDC05	Cote bleue / (18A) CARRY	5	0	1			
FRDC06b	Cap Croisette et îles du Frioul / ENDOUME	10	0	1			
FRDC07b	Cap croisette - Bec Aigle / CASSIS	9	0	1			
FRDC07e	Pierreplane - Ile du Gaou / (21E) ILE EMBIEZ	10	0	1			
FRDC07g	Cepet - Carqueiranne	17	0	1			
FRDC07h	lles du Soleil / PORT CROS	5	0	1			
FRDC08d	Ouest Fréjus - Pointe Galère / (27B) FREJUS EST	11	0	1			
FRDC09c	Port Comm. Nice - Cap Ferrat / VILLEFRANCHE				69	0	1

En 2006, toutes les masses d'eau obtiennent une classification très bonne, avec aucun échantillon présentant de bloom d'espèces nuisibles. Seules 3 masses d'eau à l'embouchure de fleuve (FRDC 02a et 04) ont connu des blooms d'espèces nuisibles pour la période 2001-2006, sans que cela ne déclasse la masse d'eau.

4.2.2.4. Synthèse

L'ensemble des résultats concernant le phytoplancton (Biomasse, Abondance et Composition) est présenté dans le Tableau 32. L'oxygène dissous est ajouté comme paramètre d'aide à l'interprétation. L'ensemble des paramètres reprend les résultats de l'année 2006, sauf pour quelques stations où la différenciation des années n'a pas été possible pour les paramètres abondance et composition (notés d'une « * »).

Tableau 32 : Synthèse du descripteur phytoplancton pour l'année 2006.

			Descripteur utilisé pour classificatio n	Descripteurs en attente de validation			
	ME	Nom ME	Biomasse	Abondance Composition Oxygère			
LR	FRDC01	Espagne - Racou plage	2	2	1	2	
	FRDC02a	Racou pl Emb. Aude	1	2*	1*	1	
	FRDC02c	Cap d'Agde	1	2	1	1	
Rhône	FRDC03	Estuaire du Rhône	1	2	1*	1	
	FRDT 20	Grand Rhône	1	-	-	-	
PACA	FRDC04	Golfe de Fos	1	2*	1*	1	
	FRDC05	Cote bleue	1	1	1	-	
	FRDC06b	Marseille - Frioul / Frioul	2	1	1	-	
	FRDC07b	Croisette – Bec aigle	1	1	1	-	
	FRDC07e	Pierre plane - Gaou	1	1	1	-	
	FRDC07g	Cepet - Carqueirn.	1	1	1	1	
	FRDC07h	lles du soleil	1	1	1	-	
	FRDC08d	Fréjus – Pointe galère	1	1	1	-	
	FRDC09d	Rade Villefranche	1	1*	1*	2	

* résultats des années 2001-2006

1 : Très bon. 2 : bon. 3 : moyen. 4 : médiocre. 5 : mauvais

Les paramètres Biomasse, Abondance et Composition ont globalement des états de qualité bons à très bons, quelles que soient les éco-régions.

Les résultats concernant la biomasse phytoplanctonique (Chlorophylle-a) sont cartographiés en annexe (7.10).

Observations et recommandations

L'acquisition des données au cours de l'année 2006 a montré la difficulté d'échantillonner un aussi grand nombre de masses d'eau le long d'un important linéaire côtier. La fréquence élevée, et dans certains cas les conditions météorologiques ont rendu difficile, malgré l'implication de tous les partenaires, l'échantillonnage, notamment pour les points nouveaux éloignés des infrastructures.

Pour pallier cette difficulté, l'Ifremer et l'AERM&C ont élaboré une stratégie alternative basée sur l'acquisition de données à haute fréquence sur des points de référence, ce qui a permis de recaler l'ensemble des stations appartenant à la même écorégion sur ces points.

Cette stratégie a notamment été validée pour la chlorophylle-a par une étude menée en parallèle au titre de la convention cadre Ifremer / Agence de l'eau sur l'utilisation de produits dérivés d'images satellites. Les résultats ont permis d'obtenir à l'échelle du district un atlas saisonnier de la médiane mensuelle de la concentration de la chlorophylle-a, avec une bonne correspondance vis à vis des données de terrain. Cet atlas fournit au fil des saisons une valeur de référence calculée par intégration, à la fois dans le temps et dans l'espace, des masses d'eau du district. L'intérêt de l'outil est qu'il permet d'identifier les masses d'eau qui présentent le plus de variabilité, donc d'orienter le positionnement des stations et la stratégie temporelle du suivi.

L'utilisation d'un tel outil grâce à la couverture complète des masses d'eau devrait permettre la spatialisation des données acquises *in situ*, d'optimiser la stratégie d'échantillonnage y compris à l'échelle d'un plan de gestion. Cet outil reste à développer pour les lagunes où la correspondance des données spatiales et *in situ* est pour l'instant beaucoup moins bonne.

4.2.3. Posidonie

Les résultats complets des campagnes 2006 et 2007 sont présentés dans les tableaux en annexe (7.7).

4.2.3.1. Valeurs de référence

L'utilisation du BQE Posidonie dans la région Languedoc-Roussillon (types B et C) a permis de confirmer deux points importants : (i) une distribution spatiale limitée, (ii) une distribution bathymétrique différente entre le Roussillon et le Languedoc.

Il est donc nécessaire de considérer deux zones distinctes: la zone des herbiers palavasiens (Carnon à Agde, littoral languedocien: type C) et la zone de Banyuls (littoral roussillonnais: type B). Dans les deux cas, les herbiers se caractérisent par des densités élevées (413,28 à 612,50 faisceaux.m⁻²) et de petites surfaces foliaires globales (89,85 à 177,52 cm².faisceau⁻¹). Ces valeurs doivent être rapportées à la faible profondeur d'échantillonnage (-5 à -8m en Languedoc) et aux conditions environnementales particulières liées principalement aux impacts du panache rhodanien et à la courantologie littorale (turbidité élevée, mouvements sédimentaires importants, fort hydrodynamisme).

En revanche, les limites inférieures sont très différentes entre le Languedoc et le Roussillon. Dans le premier cas, les herbiers se présentent sous la forme de petites taches éparses dont le taux de recouvrement n'excède pas 30%. Plus qu'une véritable limite inférieure, on peut parler d'une limite de distribution de ces taches, au niveau de laquelle le taux de recouvrement est inférieur à 10%. Celle-ci s'étend entre 4 et 12m de profondeur.

Dans le secteur de Banyuls, la Posidonie forme de véritables herbiers présentant une structure principale en « mosaïque ». La limite inférieure de ces herbiers ne s'étend pas au-delà de 19m. Elle est très variable d'un site à l'autre et est parfois difficile à distinguer en raison du type particulier d'herbier présent dans cette zone.

En Provence Alpes Côte d'Azur (types D, E, F, G, I, J), on distingue également deux groupes de stations mais il n'apparaît pas nécessaire de les distinguer strictement quant aux valeurs de référence. Le premier comprend les sites des Bouches-du-Rhône (types E et F) caractérisés par une densité moyenne de $303,33 \pm 72,19$ faisceaux.m⁻², une surface foliaire moyenne de $214,62 \pm 32,06$ cm².faisc⁻¹ et une limite inférieure s'étendant entre 18 et 27 m de profondeur. Le deuxième groupe correspond aux stations du Var (types G, I, J) où les valeurs moyennes des densités et surfaces foliaires sont élevées et atteignent respectivement $426,16 \pm 49,35$ faisceaux.m⁻² et $296,71 \pm 41,18$ cm².faisc⁻¹. Les herbiers s'étendent plus profondément, entre -22 et -35 m.

Type C: Littoral languedocien:

Malgré la distribution particulière des herbiers, la variabilité des profondeurs d'échantillonnage (liée à la distribution des taches) et l'absence de véritable limite inférieure, les valeurs de référence suivantes ont été retenues :

- densité: 983 faisceaux.m⁻²
- surface foliaire: 295 cm².faisceau⁻¹
- rapport E/L : 0g.g⁻¹
- profondeur de limite inférieure corrigée : 15m (limite maximale notée sur le terrain: 12m; limite progressive (+3m))

Type B: Littoral du Roussillon:

Dans le cas du Roussillon, les données des deux campagnes ont été complétées par les données d'une étude réalisée sur la même zone par Ferrari (2006). Les valeurs de référence suivantes ont été retenues :

- densité: 675 faisceaux.m⁻²
- surface foliaire: 296 cm².faisceau⁻¹
- rapport E/L : 0g.g⁻¹
- profondeur de limite inférieure corrigée : 22m [limite maximale notée sur le terrain: 19m; limite progressive (+3m)]

Type D, E, F, G, I, J: Littoral de Provence Alpes Côte d'Azur:

En région Provence-Côte d'Azur, les données des deux campagnes ont été complétées par des valeurs tirées de la littérature (Pergent-Martini, 2006). Les valeurs de référence suivantes ont été retenues :

- densité: 675 faisceaux.m⁻²
- surface foliaire: 465 cm².faisceaux⁻¹
- rapport E/L: 0g.g⁻¹
- profondeur de limite inférieure corrigée : 37 m

Dans le cadre de ce travail, le postulat de l'existence de trois « éco-régions » en France (MED-GIG, Février 2007) a été retenu. De ce fait, nous avons défini une profondeur de référence théorique pour l'ensemble de la région Provence-Côte d'Azur, égale à la moyenne des profondeurs maximales estimées dans les trois départements la composant, soit –34 m.

L'état de référence se traduit donc par un herbier s'étendant jusqu'à -34 m, présentant une limite progressive. La profondeur de limite inférieure corrigée correspondante est donc égale à -37 m.

4.2.3.2. Calcul des EQR

Le principe de calcul des EQR est le même quelle que soit la station. Néanmoins, l'attention doit être attirée pour ce qui concerne la limite inférieure. Suivant les décisions prises par le groupe « angiosperme » du MED-GIG, les mesures dans l'herbier de Posidonie sont effectuées à -15m, la limite minimale corrigée de limite inférieure étant égale à -12m. Ce postulat ne peut être appliqué aux stations languedociennes.

Une valeur minimale corrigée a été retenue comme égale à –1 m (valeur réelle de limite égale à –4 m ; état régressif). Concernant la station de Banyuls la profondeur minimale retenue est identique à celle prise en compte en région PACA. Le Tableau 33 résume l'ensemble des valeurs d'EQR en LR et en PACA.

Masse d'eau	Station	EQR
FRDC01	Banyuls Parasol	0,679
FRDC02c	Agde matte	0,466
FRDC05	Couronne	0,557
FRDC05	Carry	0,659
FRDC06b	Prado	0,635
FRDC 07a	Riou	0,675
FRDC07b	Cassis	0,581
FRDC07e	Brusc	0,637
FRDC07a	Toulon	0.712

Levant

Antibes

St Raphael

FRDC07h

FRDC08d

FRDC09a

Tableau 33 : Classification du descripteur Posidonie en région LR

Les résultats montrent une classification des stations variant entre « l'état moyen » et « le très bon état ». Dans l'ensemble, cette classification correspond bien à l'évaluation qualitative des herbiers pouvant être notée *in situ* par les observateurs scientifiques.

4.2.3.3. Synthèse

D'une manière générale, la division du littoral méditerranéen continental en deux écorégions, Languedoc-Roussillon et Provence-Alpes-Côte d'Azur, ressort renforcée par les données de densité et de biométrie foliaire acquises en 2006 et en 2007. La région LR se caractérise par des valeurs de densité élevées couplées à une faible surface foliaire (feuilles courtes). A l'inverse, en région PACA, les valeurs de densité, moins

élevées en raison de la profondeur, sont associées à de plus fortes valeurs de surface foliaire (feuilles longues).

Tableau 34: Classification du descripteur Posidonie pour les masses d'eau côtières

Région	Code masse d'eau	Station	Qualité Posidonie / station	Qualité Posidonie / masse eau
LR	FRDC01	Banyuls		
LK	FRDC02c	Agde		
	FRDC05	Couronne		
	FKDC05	Carry		
	FRDC06b	Prado		
	FRDC 07a	Riou		
PACA	FRDC07b	Cassis		
1 707	FRDC07e	Brusc		
	FRDC07g	Toulon		
	FRDC07h	Levant		
	FRDC08d	St Raphael		
	FRDC09a	Antibes		

1 : Très bon. 2 : bon. 3 : moyen. 4 : médiocre. 5 : mauvais

Les résultats de qualité de la Posidonie sont cartographiés en annexe (7.10).

Ces résultats posent la question du maintien du BQE Posidonie pour la qualification des masses d'eau côtière du Languedoc.

En Roussillon, le rattachement de la station de Banyuls à deux échelles possibles de référentiels ne change pas sa classification (« bon état »), même si on note une différence significative de la valeur de l'EQR calculé.

4.2.4. Macrofaune benthique de substrat meuble

4.2.4.1. Granulométrie et Physico-chimie des sédiments

Granulométrie

Les stations sont majoritairement composées de « Sables purs » (13 stations sur 26). Les stations de « Sables peu envasés » représentent 4 stations, celles à « Sables moyennement envasés », 5 stations.

4 stations sont composées de « Sédiment très envasé à dominante de sables » et de « Sédiment très envasé à dominante de vases ». 3 d'entre elles sont autour de l'embouchure du Rhône, qui véhicule des particules fines d'origine terrigène. La dernière station est celle de Nice et se situe en fond de baie. Elle est localisée dans une zone d'accumulation des sédiments.

On note toutefois que la station Faraman, placée à l'embouchure du Rhône présente une granulométrie du type « Sables purs ». Cette station n'est donc pas considérée, du point de vue granulométrique, comme sous l'influence du Rhône.

De manière générale, les stations situées dans les fonds de baies et à la sortie de fleuve ont des natures de sédiments plus fins que les stations situées en zone ouverte.

Considérant les « sables purs » comme une granulométrie de « bonne qualité » et les « sédiments très envasés » comme de « mauvaise qualité », une classification de la qualité des sédiments a pu être réalisée (Tableau 35).

Carbone organique total (COT)

Les 26 stations échantillonnées peuvent être classées en 4 catégories selon l'enrichissement du sédiment en COT (faible, moyen, fort et très fort). La station de Toulon présente la plus forte teneur en COT avec une valeur de 2 %.

Il est à noter qu'il existe une corrélation entre les valeurs de COT trouvées et la proportion de fraction fine (Spearman=0,520, P_{value}=0,007). La présence de fraction fine importante peut être liée à la situation géographique de la station. L'absence de courants importants en fonds de baies favorise le dépôt de sédiments fins et donc l'envasement.

De même, la profondeur favorise la décantation des particules organiques auxquelles le COT est associé. Ce facteur peut expliquer les valeurs plus fortes de COT mesurées sur la région PACA par rapport à la région du Languedoc-Roussillon.

En région PACA, les zones ouvertes sont propices aux herbiers de Posidonies. Les stations situées en limite de ces derniers peuvent présenter un enrichissement en COT par la présence de débris végétaux.

❖ Azote Kjeldahl

Sur les 26 stations échantillonnées, 10 d'entre elles présentent des valeurs d'Azote total supérieures à 400 mais toujours inférieures à 900 mg/kg. Ces stations sont les suivantes : Beauduc, Fos, Carteau, Carry, Frioul, Ile Maire, Jarre, Antibes sud, St Raphaël et Porquerolles. La station de Toulon est la seule présentant une valeur d'Azote élevée (970 mg/kg). Les 15 autres sites échantillonnés présentent des valeurs inférieures à 400 mg/kg.

On peut noter la très forte corrélation qui existe entre les valeurs d'Azote et de COT mesurées (Spearman=0,936 ; Pvalue=0.000).

Les valeurs en Azote de la région Languedoc-Roussillon sont globalement plus faibles que celles mesurées en PACA. Ceci peut s'expliquer par la profondeur plus importante des stations de la région PACA, qui favorise une fraction fine plus importante.

Phosphore total

En l'absence de valeurs seuils de Phosphore Total bien définies, la valeur de 500 mg/kg a été retenue comme limite entre « Teneur faible » et « Teneur forte » en Phosphore.

Sur les 26 stations échantillonnées, 9 d'entre elles présentent des valeurs de Phosphore Total supérieures à 500 mg/kg.

Ces stations, divisées en 3 régions géographiques, sont toutes sous l'influence directe de fleuves qui transportent le phosphore provenant des activités humaines : le Languedoc-Roussillon, alimenté par de nombreux fleuves dont le Tech et le Têt (Collioure à Cerbère), la zone à l'embouchure de l'Hérault (Agde) et la Camargue, alimentée par le Rhône (Espiguette à Carteau). La station d'Agde Ouest présente la plus forte concentration en Phosphore Total (1200 mg/kg).

Les 17 autres stations, situées à l'Est de Marseille, présentent toutes des teneurs faibles en Phosphore Total (< 500 mg/kg).

L'annexe 7.9.2 fournit une représentation cartographique de la distribution de chacun de ces paramètre.

* Synthèse sur la qualité des sédiments

Le Tableau 35 permet de faire la synthèse des résultats physico-chimiques obtenus sur les stations côtières benthos de substrat meuble.

Tableau 35. Classification de la qualité des sédiments (fraction fine, COT, Azote, Phosphore)

Code ME	Nom de la masse d'eau	NOM DE LA STATION	Fraction fine (<%63µm)	COT (% PS)	Azote Kjeldahl (mg/kg)	Phosphore total (mg/kg)	\$ Qualité sédiments
		Cerbère	0,75	0,4	300	540	3
FRDC01	Espagne – Racou plage	Banyuls	1,48	0,3	310	560	3
		Collioure	4,35	0,4	220	510	3
FRDC02a	Racou plage – Aude	Leucate	6,30	0,3	250	380	1
FNDCUZa	Nacou plage – Aude	Gruissan	15,22	0,3	250	61	2
FRDC02c	Cap d'Agde	Agde W	7,51	0,3	190	1200	3
FNDCUZC	Cap d Agde	Agde E	2,43	0,2	230	720	3
		Espiguette	6,05	0,3	210	570	3
FRDC03	FRDC03 Delta du Rhône	Beauduc	51,62	0,6	450	520	4
		Faraman	6,15	0,2	160	970	3
FRDC04	Golfe de Fos	Fos	70,50	1,1	570	490	5
FKDC04	Golle de Fos	Carteau	64,90	1,5	820	510	5
FRDC05	Côte bleue	Carry	6,27	0,6	410	410	3
FRDC06b	Endoume – Croistte - Frioul	Frioul	18,59	1,2	760	290	4
FRDC07a	Iles Marseille - Cortiou	Iles Marie	4,23	0,7	470	290	3
FNDCUIA	iles Marseille - Cortiou	lle Jarre	2,39	1	750	350	4
FRDC07b	Cap Croisette – Bec Aigle	Cassis	18,70	0,4	260	170	2
FRDC07e	llot Pierre plane- Point Gaou	Ile Embiez	25,94	0,7	360	140	3
FRDC07g	Cepet - Carqueiranne	Toulon	28,22	2	970	250	5
		Le Levant	1,17	0,4	310	220	1
FRDC07h	lles du soleil	Porquerolles	10,72	1,2	860	230	4
		Lavandou	3,07	0,4	320	320	1
FRDC08d	Ouest Fréjus- Pte Galère	St Raphael	22,85	1,7	800	230	5
FRDC09a	Cap Antibes - port Antibes S	Antibes S	26,50	1,3	600	340	4
FRDC09b	Sud port Antibes-Port	Antibes N	24,30	0,3	250	490	3
LKDC03D	commerce de Nice	Nice	40,60	0,7	350	440	4

<u>Légende de l'Azote:</u> ■ Teneur faible, ■ T. moyenne, ■ T. forte, ■ T. très forte.

<u>Légende du Phosphore:</u> ■ Teneur faible, ■ Teneur forte.

<u>Légende du COT:</u> ■ Enrichissement moyen, ■ E. fort, ■ E. très fort.

<u>Légende Fraction fine:</u> ■ Sables purs, ■ Sables peu envasés, ■ Sables moyennement envasés, ■ Sédiment très envasés à dominantes de vases.

PS: poids sec

La classification globale de la qualité des sédiments reprend la notation du paramètre le plus déclassant.

Concernant l'enrichissement trophique, la région Languedoc-Roussillon se détache de la région PACA par ses teneurs faibles en COT et Azote mais des teneurs de moyennes à faibles en Phosphore.

4.2.4.2. La macrofaune benthique

Le traitement et la synthèse des données concernant les 26 stations macrofaune benthique ont fait l'objet d'un rapport particulier détaillé¹.

Calcul de l'indice M-AMBI

Les résultats ont permis de calculer plusieurs indices, seul l'indice du M-AMBI (retenu pour le classement des masses d'eau) est présenté par station dans le Tableau 36.

Tableau 36 : Indice M-AMBI sur les masses d'eau côtières

Code ME	Nom de la masse d'eau	Nom de la station	Valeurs M-AMBI	Qualité benthos
		Cerbère	0,677	
FRDC01	Espagne – Racou plage	Banyuls	0,535	
		Collioure	0,613	
FRDC02a	Page Audo	Leucate	0,537	
FNDC02a	Racou plage – Aude	Gruissan	0,671	
FRDC02c	Can d'Aada	Agde W	0,608	
FRDC02C	Cap d'Agde	Agde E	0,631	
		Espiguette	0,642	
FRDC03	Delta du Rhône	Beauduc	0,723	
		Faraman	0,568	
FRDC04	Golfe de Fos	Fos	0,623	
FRDC04	Golle de Pos	Carteau	0,817	
FRDC05	Côte bleue	Carry	0,605	
FRDC06b	Endoume – Croistte - Frioul	Frioul	0,791	
FRDC07a	Iles Marseille - Cortiou	lles Marie	0,616	
FRDCora	nes marsenie - Contou	lle Jarre	0,629	
FRDC07b	Cap Croisette – Bec Aigle	Cassis	0,537	
FRDC07e	llot Pierre plane- Point Gaou	Ile des Embiez	0,695	
FRDC07g	Cepet - Carqueiranne	Toulon	0,849	
		Levant	0,817	
FRDC07h	lles du soleil	Porquerolles	0,776	
		Lavandou	0,915	
FRDC08d	Ouest Fréjus- Pte Galère	St Raphael	0,565	
FRDC09a	Cap Antibes – Sud port Antibes	Antibes S	0,645	
FRDC09b	Sud port Antibes-Port commerce de	Antibes N	0,703	
LKDC090	Nice	Nice	0,634	

La station du Lavandou se dénote des autres, car c'est la seule station classée en « Très Bon ». Les trois stations de Banyuls, Leucate et Cassis sont elles classées en « Moyen » ce qui semble démontrer des apports en matières organiques sur ces secteurs. Ces résultats ne sont pas confirmés par les teneurs trouvées en COT, Azote et Phosphore. Ces sites ont tous en commun un faible nombre d'espèces, entre 37 et 45, souvent accompagné par un indice de Shannon² bas. Ces résultats démontrent que ces stations sont soumises à une perturbation.

² Indice de diversité qui prend en compte à la fois la richesse spécifique et l'abondance relative de chaque espèce

¹ Créocean, 2007

Les 22 autres stations échantillonnées sont toutes classées en « Bon ». Les sites compris dans le delta du Rhône ont une valeur d'indice (M-AMBI) plus faible, liée aux apports terrigènes importants sur ce secteur.

Services Espèces bioindicatrices

Lorsque le milieu est soumis à une perturbation, un nouveau peuplement se met en place, dont la composition dépend du degré de sensibilité (vis-à-vis des teneurs en contaminants, de l'oxygène...) et d'adaptabilité de chaque population aux nouvelles conditions du milieu (granulométrie, compétition interspécifique...):

- retaines espèces dites indicatrices de pollution (la plus classique étant *Capitella capitata*), atteindront leur densité maximale à proximité de la source de perturbation, profitant de l'absence de compétition avec des espèces plus sensibles;
- les espèces tolérantes (polychètes spionidés, bivalves ubiquistes...) disparaîtront dans un premier temps et réapparaîtront ensuite en grand nombre ;
- les espèces indifférentes comme par exemple les carnivores, ne subiront que de légères diminutions de leurs effectifs. Leur abondance traduira cependant l'occurrence de mortalités massives et régulières ;
- ➤ enfin les espèces sensibles telles que les suspensivores seront largement dominantes en condition normale et observeront un gradient de densité croissant avec la distance à la source de perturbation.

Les espèces indicatrices d'une perturbation du milieu ont été recherchées et leur abondance relative est calculée par rapport à la densité totale du peuplement. Le premier constat est que toutes les espèces bioindicatrices de perturbations du milieu ne sont présentes qu'en faible quantité (moins de 10% de la densité totale).

Dans la zone du delta du Rhône et de St Raphaël à Nice, on retrouve des espèces indicatrices d'enrichissement du sédiment en matières organiques. Ces stations correspondent à des stations de fonds de baie ou d'embouchures de fleuves.

On note très peu d'espèces caractéristiques de milieux à «Instabilité sédimentaire » ou à « Hypersédimentation à sables fins ». Ces espèces ne représentent jamais plus de 3,3% dans le premier cas et 1% dans le second.

Services Espèces dominantes

Sur les 26 stations échantillonnées, seules 19 espèces (10 Annélidés, 6 Crustacés, 1 Cnidaire, 1 Mollusque et 1 Siponcle) ont des abondances supérieures à 10% de la densité totale sur au moins une station.

Quatre de ces espèces sont caractéristiques de Biocénoses remarquables :

- > Ditrupa arietina (Annélide Polychète) : Fonds Détritiques Côtiers ;
- Harpinia dellavallei (Crustacé): Vases Terrigènes Côtières ;
- Owenia fusiformis (Annélide Polychète): Sables Fins Bien Calibrés ;
- > Turritella communis (Mollusque): Vases Terrigènes Côtières.

L'espèce la plus présente sur l'ensemble des stations est le Siponcle *Aspidosiphon muelleri* (famille Sipunculide).

4.2.4.3. Synthèse

L'ensemble des résultats concernant la macrofaune benthique de substrat meuble est présenté dans le Tableau 37. La qualité physico-chimique des sédiments est ajoutée comme paramètre d'aide à l'interprétation.

Tableau 37 : Classification du descripteur « macrofaune benthique » par station et par masse d'eau

				Paramètre de qualité		Paramètre d'appui
Nom de la station	benthos /station	Code ME	Nom de la masse d'eau	benthos /masse eau		Qualité sédiments
Cerbère	2					3
Banyuls	3	FRDC01	Espagne – Racou plage	3		3
Collioure	2					
Leucate	3	FRDC02a	Racou plage – Aude	3		2
Gruissan	2	T NDC02a	Nacou plage – Aude	3		2
Agde W	2	FRDC02c	Cap d'Agde	2		3
Agde E	2	T NDC020	Cap d Ague	2		3
Espiguette	2					
Beauduc	2	FRDC03	Delta du Rhône	2		4
Faraman	2					
Fos	2	FRDC04	Golfe de Fos	2		5
Carteau	2	FRDC04	Golle de Pos	2		
Carry	2	FRDC05	Côte bleue	2		3
Frioul	2	FRDC06b	Endoume – Croistte - Frioul	2		4
Iles Marie	2	FRDC07a	lles Marseille - Cortiou	2		4
lle Jarre	2	FRDCora	iles Marseille - Cortiou	2		4
Cassis	3	FRDC07b	Cap Croisette – Bec Aigle	3		2
Ile des Embiez	2	FRDC07e	llot Pierre plane- Point Gaou	2		3
Toulon	2	FRDC07g	Cepet - Carqueiranne	2		5
Levant	2					
Porquerolles	2	FRDC07h	lles du soleil	2		4
Lavandou	1					
St Raphael	2	FRDC08d	Ouest Fréjus- Pte Galère	2		5
Antibes S	2	FRDC09a	Cap Antibes – Sud port Antibes	2		4
Antibes N	2	FRDC09b	Sud part Antibos Part commerce de Nice	2		4
Nice	2	FKDC090	Sud port Antibes-Port commerce de Nice	2		4

D'une manière générale, la qualité des sédiments a tendance a être déclassante par rapport à la qualité du benthos, sauf pour les stations à l'Ouest de l'Aude (FRDC01 et 02) et la station de Cassis (FRDC07b).

Les 3 masses d'eau classées comme « moyennes » s'expliquent par le faible nombre d'espèces et la présence de particules fines dans le sédiment. Ces stations se situent à l'embouchure de fleuves caractérisées par des apports terrigènes et des concentrations en phosphore élevées (stations de Banyuls et Leucate) ou en fond de baies envasées (station de Cassis).

Les résultats de qualité de la Macrofaune benthique sont cartographiés en annexe (7.10).

4.3. Contribution à l'évaluation de la qualité écologique : Eaux de transition

4.3.1. Hydrologie

Les résultats du Tableau 38 reprennent les données acquises en 2006 (O2, turbidité, et nutriments) sur les masses d'eau du contrôle de surveillance et traitées selon la grille de qualité présentée dans le paragraphe 3.2.4.

Tableau 38 : Classification du descripteur « Hydrologie » en eau de transition en 2006

Nom de la station	Qualité eau / station	Nom masse d'eau	Qualité eau / masse eau
Leucate Nord (LEN) Leucate Sud (LES)	1 2	FRDT 02 Leucate	2
LaPalme (LAP)	2	FRDT 03 La Palme	2
Bages Nord (BGN) Bages Milieu (BGM) Bages Sud (BGS)	2 2 2	FRDT 04 Bages	2
Grand Bagnas (BAN)	4	FRDT 09 Bagnas	4
Thau Est (TE) Thau Ouest (TW)	1 1	FRDT 10 Thau	1
Or Ouest (ORW) Or Est (ORE)	5 5	FRDT 11a Or	5
Prévost Ouest (PRW) Méjean Ouest (MEW)	3 5	FRDT 11b Palavasiens Est	5
Vaccarès	3	FRDT 14 Vaccarès	3
Berre (BES)	2	FRDT 15a Berre	2

1 : Très bon. 2 : bon. 3 : moyen. 4 : médiocre. 5 : mauvais

Le classement du descripteur « hydrologie » est assez hétérogène d'une lagune à l'autre.

Comme vu plus loin, la tendance mise en évidence par ce classement correspond à celle du paramètre Chlorophylle-a.

Les étangs de Leucate, La Palme, Bages, Thau et Berre sont en bon et très bon état. Les étangs Grand Bagnas, Or, Palavasiens et Vaccarès sont en mauvais et moyen état.

Toutes les données sont présentées en annexe (7.5.3).

4.3.2. Phytoplancton

Le diagnostic porté sur les différents paramètres du phytoplancton est présenté par station, puis exprimé par masse d'eau en conservant le niveau de qualité de la station la plus déclassante.

Rappelons que seul le paramètre « Biomasse » a un caractère obligatoire pour l'évaluation de l'indicateur Phytoplancton. Les données des paramètres « Abondance » et « Composition » ont été reportées dans ce paragraphe pour une simulation de résultats.

4.3.2.1. Biomasse

La biomasse du phytoplancton est étudiée depuis 1999 dans le cadre du RSL ce qui a permis pour les stations de ce réseau de comparer les résultats traités sur la période 2006 et sur la période 2001-2006. Les résultats sont présentés dans le Tableau 39.

Tableau 39 : Classification du descripteur Biomasse (Chlorophylle-a) dans les lagunes en 2006 et comparaison avec les données disponibles sur les années 2001-2006

Nom de la station	P90 (Chl-a)/ station 2006	Nom de la masse d'eau	P90 (Chl-a)/ masse eau 2006	P90 (Chl-a)/ masse eau 2001- 2006
Leucate Nord (LEN) Leucate Sud (LES)		FRDT 02 Leucate		
LaPalme (LAP)		FRDT 03 La Palme		
Bages Nord (BGN) Bages Milieu (BGM) Bages Sud (BGS)		FRDT 04 Bages		
Grand Bagnas (BAN)		FRDT 09 Gd Bagnas		
Thau Est (TE) Thau Ouest (TW)		FRDT 10 Thau		
Or Ouest (ORW) Or Est (ORE)		FRDT 11a Or		
Prévost Ouest (PRW) Méjean Ouest (MEW)		FRDT 11b Palavasiens		
Vaccarès (VC)		FRDT 14 Vaccarès		-
Berre (BE)		FRDT 15a Berre		-
Grand Rhône		FRDT 20 Grand Rhone		-

Les résultats de chlorophylle-a de 2006 sont d'une qualité très bonne dans les étangs de Leucate, La Palme et de Bages, et médiocre pour les lagunes de Thau et Berre. Les lagunes de Grand Bagnas, Palavasiens Est et l'Or sont dans un état de dégradation plus important.

L'étang de Vaccarès est, quant à lui, classé en bon état.

La comparaison entre les résultats de l'année 2006 et des années 2001-2006 ne montre pas de différence importante de classification.

4.3.2.2. Abondance

Les valeurs d'abondance de picophytoplancton et de nanophytoplancton sont interprétées selon la grille présentée au chapitre 3.3.3.2. Les résultats des calculs de P90 effectués sur l'ensemble des stations sont reportés en annexe (7.6.2).

La cytométrie en flux distingue le nanoplancton du picoplancton, ce qui permet de mesurer l'abondance de ces deux tailles de phytoplancton. Le P90 de ces deux types de données est calculé sur les années consécutives de 2001 à 2006 pour les lagunes prises en compte dans le cadre du RSL, sur l'année 2006 pour les étangs de Berre et de Vaccarès. L'ensemble des résultats est synthétisé dans le Tableau 40.

Tableau 40 : Classification du descripteur « Abondance » dans les lagunes pour la période 2001-2006, à partir des P90 des données d'abondance phytoplanctonique (nano- et picoplancton)

Nom de la station	CMF / station 2001-2006	Code masse d'eau	CMF / masse eau 2001-2006
Leucate Nord (LEN) Leucate Sud (LES)		FRDT 02 Leucate	
LaPalme (LAP)		FRDT 03 La Palme	
Bages Nord (BGN) Bages Milieu (BGM) Bages Sud (BGS)		FRDT 04 Bages	
Grand Bagnas (BAN)		FRDT 09 Bagnas	
Thau Ouest (TW) Thau Est (TE)		FRDT 10 Thau	
Or Ouest (ORW) Or Est (ORE)		FRDT 11a Or	
Prévost Ouest (PRW) Méjean Ouest (MEW)		FRDT 11b Palavasiens	
Vaccarès*		FRDT 14 Vaccarès*	
Berre (BE)*		FRDT 15a Berre*	

^{*} données 2006 uniquement

Les étangs de Leucate, La Palme, Bages et Vaccarès sont en bon et très bon état ; les étangs de Bagnas, Thau et Berre sont dans un état plutôt médiocre. Quant aux étangs palavasiens (FRDT11b) et de l'Or, leur état est très dégradé.

Ces résultats mettent en évidence l'hétérogénéité au sein d'une même lagune, observée également sur d'autres compartiments biologiques. A Bages ou à Leucate par exemple, les stations Nord (BGN) ou Sud (LES) sont plus déclassantes que les autres stations de la masse d'eau.

Commentaires et recommandations:

Plusieurs traitements ont été réalisés pour évaluer la variabilité interannuelle. Les calculs des P90 effectués sur des couples de deux années, une année sur trois (1999 et 2002, 2001 et 2004, 2002 et 2005, 2003 et 2006), conduisent à des niveaux de qualité variables, différents de la qualité obtenue sur plusieurs années consécutives (détail annexe 7.6.2). Par exemple, la station LES à Leucate passe du niveau bon avec les données de 1999 et 2002, au très bon pour 2001 et 2004, puis au moyen pour 2002 et 2005. Ces différences rendent compte de la variabilité interannuelle des paramètres de la colonne d'eau et en particulier de l'abondance phytoplanctonique. A l'inverse d'autres lagunes comme La Palme ou les lagunes palavasiennes (masses d'eau FRDT11a et FRDT11b) montrent une stabilité de la qualité obtenue quels que soient les couples d'années choisies, et quelle que soit la classe de qualité.

Ces résultats montrent que les lagunes caractérisées par une stabilité de données pourraient ne faire l'objet d'un suivi de l'abondance phytoplanctonique qu'une année sur trois dans le cadre du contrôle de surveillance.

4.3.2.3. Composition

La circulaire MEDAD 2007/20 DCE recommande de prendre en compte les blooms d'espèces nuisibles une année sur trois pour les masses d'eau de qualité très bonne ou mauvaise, tous les ans pour les masses d'eau de qualité intermédiaire. En plus des données 2001-2006, la combinaison des années 2003 + 2006 a été testée ; les résultats sont présentés en annexe (7.6.4).

L'application des deux grilles de limites de classes (20-40-70-90 et 10-17-35-80) préconisées dans la partie 3.3.4.3 conduit à des résultats identiques (Tableau 41). La contribution des taxons nuisibles à l'indicateur de composition, pour le critère seuil de bloom égal à un million de cellules par litre, est détaillée en annexe (7.6.3).

Tableau 41 : Classification du descripteur « composition » pour les années 2001 à 2006. Composition exprimée en % d'échantillons avec bloom nuisible (> 1 000 000 cellules).

Nom de la station	Nb données	%bloom nuisible	Qualité / station
Leucate Nord (LEN)			
Leucate Sud (LES)			
Parc Leucate 2	27	0	1
LaPalme (LAP)	10	0	1
Bages Nord (BGN)			
Bages Milieu (BGM)			
Bages Sud (BGS)			
Grand Bagnas (BAN)			
Thau Est (TE)			
Thau Ouest (TW)			
Bouzigues	26	0	1
Or Ouest (ORW)			
Or Est (ORE)			
Prévost Ouest (PRW)			
Prévost	8	0	1
Méjean Ouest (MEW)			

Code masse d'eau	Qualité / masse eau
FRDT 02 Leucate	1
FRDT 03 La Palme	1
FRDT 04 Bages	-
FRDT 09 Bagnas	-
FRDT 10 Thau	1
FRDT 11a Or	-
FRDT 11b Palavasiens	1

Berre (BE)	6	0	1	FRDT 15a Berre *	1
Grand Rhône	11	0	1	FRDT 20 Grand Rhone	1

nbmes : nombre de mesures * 2003 - 2006 uniquement

Les masses d'eau échantillonnées dans le cadre du REPHY obtiennent une classification très bonne, avec aucun échantillon présentant un bloom nuisible.

4.3.2.4. Synthèse

La classification pour l'indicateur Phytoplancton est réalisée à l'échelle de chaque masse d'eau (Tableau 42).

Tableau 42 : Classification du paramètre Biomasse pour l'indicateur Phytoplancton [P90 Chl-a], pour l'année 2006

Années		2006
Paramètres PHYTO	biomasse	
Nom ME	Code ME	P90 Chla
Leucate	FRDT 02	
La Palme*	FRDT 03	
Bages	FRDT 04	
Bagnas	FRDT 09	
Thau	FRDT 10	
Palavasiens	FRDT 11b	
Or	FRDT 11a	
Vaccarès	FRDT 14	
Berre	FRDT 15a	
Grand Rhône	FRDT 20	

* masse d'eau de référence

1 : Très bon. 2 : bon. 3 : moyen. 4 : médiocre. 5 : mauvais

Le descripteur « biomasse », qui à l'heure actuelle est le seul paramètre validé au niveau national, montre que les étangs de Leucate, La Palme, Bages sont de qualité très bonne.

Les étangs de Thau, Vaccarès et Berre sont de qualité moyenne. Enfin les étangs de Grand Bagnas, Or et les palavasiens présentent une mauvaise qualité.

Commentaires

L'ensemble des données sur les paramètres définissant le phytoplancton (biomasse, abondance, composition) a été analysé et simulé pour la période 2001-2006 (Tableau 43).

Etant de très bonne qualité pour l'ensemble des lagunes, le paramètre « composition » est un paramètre non déclassant. Par contre, on observe que les paramètres Chlorophylle et Abondance présentent des états de qualité relativement homogènes au sein d'une même lagune, à l'exception de Thau.

Les résultats de qualité de la Chlorophylle-a sont cartographiés en annexe (7.10).

Tableau 43 : Classification de l'indicateur Phytoplancton pour la période 2001-2006: Biomasse [P90 Chl-a], Abondance ([P90 CMF] = Max P90 (Pico, Nano), Composition [% blooms nuisibles].

			2001 - 2006	
		biomasse	abondance	composition
Nom ME	Code ME	P90 Chla	P90 CMF	%bl. nuisibles
Leucate	FRDT 02			
La Palme*	FRDT 03			
Bages	FRDT 04			-
Bagnas	FRDT 09			-
Thau	FRDT 10			
Palavasiens	FRDT 11b			
Or	FRDT 11a			-
Vaccarès	FRDT 14	-		-
Berre	FRDT 15a	-		2003-2006
Grand Rhône	FRDT 20	-		

4.3.3. Macrophytes

En 2006, seules les lagunes de Thau et du complexe palavasien ont été suivies et ont fait l'objet d'un diagnostic complet des macrophytes; les résultats sont reportés cidessous.

Pour les autres masses d'eau, les résultats synthétiques des études antérieures sont présentés, les résultats détaillés sont présentés en annexe 7.8, avec pour chaque lagune, un jeu de cartes représentant :

- La distribution spatiale de la densité de biomasse des phanérogames, des algues rouges, des algues vertes opportunistes et de la biomasse totale dans la lagune ;
- La distribution des états associés aux macrophytes dans la lagune.

4.3.3.1. Etang de Thau

Le diagnostic effectué en 2006 fait état d'une population de macrophytes aussi riche en espèces que lors des précédents diagnostics de 1998 et 2003 (Ifremer, 2004).

Parmi les 42 espèces dénombrées en juin 2006, les espèces les plus largement répandues sont :

- l'algue verte opportuniste *Cladophora vagabunda*,
- l'algue rouge opportuniste Gracilaria verrucosa
- et la phanérogame Zostera marina

Deux espèces de phanérogames sont retrouvées en juin 2006 : Zostera marina et Z. noltii. Zostera marina est la troisième espèce la plus fréquemment recensée sur Thau en juin 2006. Les herbiers de zostères, qui constituent la plus grande partie des macrophytes climax, se localisent principalement en bordure d'étang, la plupart sous forme d'herbiers clairsemés et de faible étendue.

Avec 19 espèces relevées au cours du diagnostic, les algues rouges (Rhodophycées) sont les plus nombreuses. Les rhodophycées dérivantes de fond des genres *Gracilaria*, *Alsidium*, *Halopitys* et *Solieria* forment d'importantes populations dans tout l'étang, recouvrant les sédiments et étiolant les herbiers et les algues fixées (acétabulaires, cystoseires). Ces observations témoignent d'un enrichissement à long terme du milieu en éléments nutritifs. Il faut noter cette année la présence inhabituelle de l'algue rouge fixée *Polysiphonia elongata* sur 20 stations. Cette espèce de référence (dite « climax ») est également beaucoup retrouvée en Atlantique sur les parcs conchylicoles.

Les populations d'*Acetabularia acetabulum* (acétabulaires), seule algue climax parmi les 9 espèces d'algues vertes (Ulvophycées), se retrouvent essentiellement dans la moitié ouest de l'étang jusqu'à 3 mètres de profondeur. Leur présence est un bon signe.

L'espèce *Cladophora vagabunda*, algue verte opportuniste la plus fréquemment retrouvée (41 stations sur 70), présente un caractère envahissant. La laitue de mer (*Ulva rigida*), autre Ulvophycée opportuniste, bien que présente dans plus d'un tiers des stations, ne constitue pas de populations proliférantes. Les deux espèces de Chaetomorphe (*Chaetomorpha aera* et *C. linum*) occupent la majorité de la zone des Onglous au sud-ouest de l'étang sous forme de masses denses de filaments. La présence de ces algues opportunistes dans un grand nombre de stations révèle un enrichissement notable du milieu en éléments nutritifs.

Parmi les 12 espèces d'algues brunes (Fucophycées), l'algue climax Cystoseire (*Cystoseira barbata*, *C. multifida* et *C. repens*), présente dans une vingtaine de stations, montre que l'étang a un potentiel de restauration. Par contre, la sargasse, qui est retrouvée sur 12 stations, peut présenter une menace sur la flore aquatique de l'étang de Thau, car cette espèce importée du Japon pourrait envahir les surfaces solides (parcs, rochers,...) de façon généralisée. (Annexe 6 – chapitre 7.6.2.).

La population de macrophytes diagnostiquée en 2006 sur l'étang de Thau montre donc à la fois des signes positifs et négatifs, traduisant un état d'équilibre instable.

Le recouvrement végétal moyen est de 69 % sur la moitié Est et de 77 % sur la moitié Ouest (Tableau 44). Le croisement des données de richesse spécifique et du pourcentage moyen de recouvrement par les espèces climax nous donne l'état de la qualité du compartiment macrophytes. Pour les deux moitiés d'étang, l'état obtenu est moyen, du fait du faible pourcentage de recouvrement par les espèces climax, en particulier sur la moitié Est où il n'atteint que 11 %, plus très loin de l'état médiocre (moins de 5 % de climax).

Tableau 44 : Classification du descripteur « macrophytes » sur l'étang de Thau (2006).

Stations	Recouvrement végétal (%)	Recouvrement des espèces climax (%)	Nombre d'espèces	Eta
Thau Est	69	11	34	
Thau Ouest	77	32	31	

Le diagnostic par station montre que sur la moitié Ouest, le bilan est moins mauvais avec 9 stations au-dessus du seuil de bonne qualité. Les 9 stations en très bon état se localisent essentiellement en bordure Est, Nord et Ouest de l'étang. Cette répartition coïncide avec celle des espèces climax et s'explique par la faible profondeur qui, grâce au passage de la lumière, autorise le développement des herbiers.

4.3.3.2. Complexe palavasien

Seuls les étangs palavasiens-Est (Méjean, Grec, Arnel et Prévost) sont concernés par le programme DCE et sont traités dans ce chapitre. (Annexe 6 – chapitre 7.6.3.).

Le diagnostic des macrophytes a été réalisé de fin mai à début juillet 2006. Sur les 91 stations échantillonnées, 19 n'ont pu faire l'objet d'un diagnostic en raison de la faiblesse de leur recouvrement macrophytique (l'étang du Méjean est entièrement concerné, ainsi que quelques stations sur l'Arnel et le Grec).

Distribution des Phanérogames et algues climax

L'étang du Prévost est la seule lagune sur laquelle des espèces climax ont été retrouvées. Aucune véritable population n'a été observée sur cette lagune.

Distribution des autres macroalgues

Les principales populations de macrophytes observées sur les étangs palavasiens se classent en deux familles :

- les macroalgues vertes opportunistes représentées par quatre espèces (*Ulva rigida*, *Cladophora vagabunda*, *Chaetomorpha aerea*, *Enteromorpha clathrata*)
- et les macroalgues rouges dérivantes, représentées en grande majorité par deux espèces (*Gracilaria verrucosa* et *Gracilaria bursa-pastoris*).

Chacune de ces familles se partage les étangs palavasiens. Les macroalgues vertes opportunistes dominent les biomasses des étangs du Grec et du Prévost. L'Arnel et le Méjean ne possèdent aucunes véritables populations ni de l'une ni de l'autre de ces familles.

L'étang du **Grec** possède une richesse spécifique extrêmement limitée : une seule espèce est retrouvée, l'*ulve* (avec un maximum de 300 g d'*ulves*/m²).

Le **Prévost** possède une diversité spécifique un peu plus importante, avec 5 espèces présentes. La seule qui forme des populations est l'ulve (410 g d'ulves/m² au maximum). *Gracilaires* et *enteromorphes* ne sont présentes qu'en individus isolés.

L'étang de l'**Arnel** ne possède aucune population mais on retrouve quelques individus appartenant à 3 espèces : *ulves, gracilaires* et exceptionnellement des *enteromorphes*.

Enfin le **Méjean** en l'absence de macrophytes, n'a pu faire l'objet d'un diagnostic. Quelques *ulves* et *enteromorphes* ont été retrouvées flottantes à la surface, mais aucun individu n'a été retrouvé sur les sédiments.

Le recouvrement relatif des espèces climax sur les lagunes palavasiennes est faible. Il est même inférieur à 5% voire inexistant sur certaines lagunes. Pour celles dont la richesse spécifique est supérieure ou égale à trois espèces (Arnel et Prévost), l'état est médiocre. Pour le Grec, qui ne possède qu'une espèce végétale, l'état est mauvais. Pour cause d'absence totale de macrophytes, le Méjean est inclassable, mais à défaut classé mauvais.

Tableau 45 : Classification du descripteur « macrophytes » sur les étangs palavasiens-est (2006).

Lagunes	RV	RC	Nsp		Etat
Arnel	15	0	3		
Prévost	55	0	5		
Méjean	1	-	2		
Grec	55	0	1	1 1	

RV = Recouvrement Végétal total. RC = Recouvrement Climax relatif. f. Nsp = Nombre d'espèces total. s.

4.3.3.3. Masses d'eau diagnostiquées avant 2006

tang de Leucate

Le diagnostic réalisé en 2004 sur deux secteurs de la lagune, aboutit à un très bon état pour la partie Nord et à un état moyen pour la partie Sud. La comparaison avec les diagnostics précédents indique que les peuplements de macrophytes dans la lagune de Salses-Leucate sont stables. On peut cependant noter que le pourcentage d'espèces climax a légèrement diminué dans la partie Sud aboutissant à un déclassement du compartiment. (Annexe 6 – chapitre 7.6.4.)

Tableau 46 : Classification du descripteur « macrophytes » sur l'étang de Leucate (Ifremer 2004)

Stations	Année	RV (%)	Nsp	% climax	Etat
Leucate Nord	2004	71%	25	77	
Leucate Sud	2004	62%	30	43	

RV = recouvrement végétal. RC : recouvrement d'espèces climax. Nsp : nombre d'espèces

tang de La Palme

Le diagnostic établit en 2005, malgré un déficit hydrique qui a diminué le niveau de la lagune, un taux de recouvrement relativement faible, et une couverture végétale insuffisante, un état très bon compte tenu d'un pourcentage élevés de recouvrement par les zoostères.

Tableau 47 : Classification du descripteur « macrophytes » sur l'étang de La Palme en 2005 (Ifremer, 2005)

Lagune	Année	Nsp	RV (%)	RC (%)	Etat
La Palme	2005	6	26.5	98	

RV = recouvrement végétal. RC : recouvrement d'espèces climax Nb Sp : nombre d'espèces

❖ Bages-Sigean

Dans l'étang de Bages, les macrophytes sont en nette régression en 2005. Le taux de recouvrement des stations à l'Est du bassin de Bages était nul. A l'Ouest, la biomasse, majoritairement constituée par l'algue rouge *Gracilaria verrucosa*, n'excède pas 55 g/m² avec un taux de recouvrement inférieur à 5%. Le diagnostic est moyen pour les secteurs Nord et milieu et bon pour le Sud.

Tableau 48 : Classification du descripteur « macrophytes » sur l'étang de Bages-Sigean (Ifremer, 2005)

Stations	Année	RV (%)	%BC	Nsp	Etat
BGN (Nord)	2005	76	11	5	
BGM (milieu)	2005	53	14,5	7	
BGS (sud)	2005	78	58	13	

Légende: RV = recouvrement végétal. %BC = pourcentage de biomasse des espèces. RC = recouvrement des espèces climax. Nsp = nombre d'espèces. Q = qualité des macrophytes

Or

Le diagnostic des macrophytes a été réalisé en juin 2005 (Annexe 6 – chapitre 7.6.7.). Sur les 32 stations benthiques échantillonnées, seulement cinq n'ont pu faire l'objet d'un diagnostic en raison de la faiblesse de leur recouvrement végétal.

En 2005, malgré une diversité satisfaisante avec la présence de 11 espèces de macrophytes dont 3 espèces climax (*Ruppia cirrhosa*, *Zostera Noltii & Céramium tenerrimum*), l'état de l'étang de l'Or est classé médiocre, en raison d'un recouvrement des espèces climax quasi-inexistant.

Tableau 49 : Classification du descripteur « macrophytes » sur l'étang de l'Or (Ifremer, 2005)

Lagune	Année	Nsp	RV (%)	RC (%)	Etat
Etang de l'Or	2005	11	45	<2	

 $RV = recouvrement\ v\'eg\'etal.\ RC: recouvrement\ d'esp\`eces\ climax\ Nb\ Sp: nombre\ d'esp\`eces$

Grand Bagnas

En 2005, sur les quatre stations suivies de l'étang du Grand Bagnas, le recouvrement végétal moyen est de 69%. Seule l'espèce *Potamogeton pectinatus* (potamot) a été retrouvée. Cette phanérogame d'eau douce, présente un caractère envahissant, ne laissant pas la possibilité à d'autres espèces de se développer, conduisant au classement en mauvais état de qualité. Comme les années précédentes ayant fait l'objet d'un suivi RSL, la présence de *cascails* a été notée mais le suivi des surfaces de recouvrement n'a pas pu être réalisé cette année.

Tableau 50 : Classification du descripteur « macrophytes » sur l'étang de Bagnas (Ifremer, 2005)

Lagune	Année	Nsp	RV (%)	RC (%)
Etang de Bagnas	2005	1	69	0

RV = recouvrement végétal. RC : recouvrement d'espèces climax Nb Sp : nombre d'espèces

Vaccarès

Les résultats les plus récents du suivi des macrophytes disponibles sur l'étang du Vaccarès (masse d'eau FRDT14) datent de 2005 et concernent les transects végétaux et l'évaluation du recouvrement des herbiers de zostères par télédétection (Annexe 6 – chapitre 7.6.8.). Cette évaluation a permis de constater qu'une grande surface de l'étang était recouverte de zostères (Figure 18), avec dans certains secteurs des herbiers en très bon état (SNPN & Réserve Nationale de Camargue, 2005).

Les dernières données du suivi par maillage régulier disponibles datent de 2003. Ces données, mises à disposition par la SNP, ont fait l'objet de l'application de la grille retenue pour la DCE. Les pourcentages relatifs de recouvrement des espèces climax présentes (*Ruppia cirrhosa*, *Zostera nolitii*, *Lamprothamnium* et *Polysiphonia*) ont été calculés pour chacune des 207 stations diagnostiquées. Les résultats de 2003 indiquent que le compartiment macrophytes peut être considéré en très bon état pour l'ensemble de l'étang du Vaccarès, avec un pourcentage moyen de recouvrement par les espèces climax de 83 % (Tableau 51) et plus de ¾ des stations en très bon état.

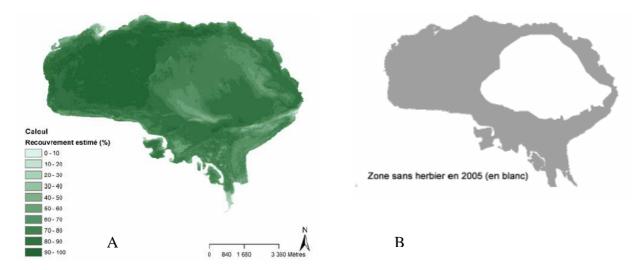


Figure 18. Recouvrement estimé de l'herbier de zostère du Vaccarès en 2005 ; B) Localisation de la zone sans herbier (positionnement par GPS) (SNPN Réserve Nationale de Camargue, 2005).

Tableau 51. Classification du descripteur « macrophytes » pour l'étang du Vaccarès (SNPN et RNC, 2003)

Lagune	Année	Nb Sp	RV (%)	RC (%)	Etat
Etang de Vaccarès	2005	10	75	83	

 $RV = recouvrement\ v\'eg\'etal.\ RC$: $recouvrement\ d'esp\`eces\ climax\ Nb\ Sp$: $nombre\ d'esp\`eces$

Berre

Les derniers résultats du suivi des macrophytes de l'étang de Berre datent de 2004 et ont fait l'objet d'une analyse cartographique dans un rapport du GIPREB (Bernard et al., 2004). Il a été possible d'appliquer la grille DCE à l'ensemble de ces données en tenant

compte des pourcentages de recouvrement des genres *Zostera*, *Polysiphonia* et *Ruppia* (considérés comme "climax" ou "de référence").

Ces suivis ont en effet été réalisés sur des espaces végétalisés caractérisés par plus de 5% de recouvrement surfacique. Les résultats (Tableau 52) donnent un état médiocre pour le Grand étang.

Tableau 52. Classification du descripteur « macrophytes » pour l'étang du Berre (GIPREB, 2004)

Stations	Année	Nb Sp	RC (%)	Etat
Grand étang Berre	2004	6	4	

RC: recouvrement d'espèces climax Nb Sp: nombre d'espèces

4.3.3.4. Synthèse

Le Tableau 53 reprend les résultats de peuplements des macrophytes échantillonnés sur la période 2003-2006 (par secteur et par masse d'eau), en conservant le niveau de qualité du secteur le plus déclassant.

Tableau 53 : Classification du descripteur « macrophytes » dans les lagunes (2004-2006)

Stations	Qualité /station	Masse d'eau	Code ME	Qualité / ME
Leucate Nord LEN	1	Leucate (2004)	FRDT 02	3
Leucate Sud LES	3			S
La Palme LAP	1	La Palme (2005)	FRDT 03	1
Bages Nord BGN	3	_		
Bages milieu BGM	3	Bages (2005)	FRDT 04	3
Bages Sud BGS	2			
Bagnas	5	Bagnas (2005)	FRDT 09	5
Thau est TE	3	Thau (2006)	FRDT 10	3
Thau Ouest TW	3	(111)		3
Arnel ARN	4			
Prévost PR	4	Palavasiens (2006)	FRDT 11b	5
Méjean	5	,		
Grec	5			
Or	4	Or (2005)	FRDT 11a	4
Grand Etang Berre	4	Berre (2004)	FRDT 15a	4
Vaccarès	1	Vaccarès (2005)	FRDT 14	1

1 : Très bon. 2 : bon. 3 : moyen. 4 : médiocre. 5 : mauvais

Dans l'ensemble, les lagunes présentent des peuplements macrophytiques dégradés, à l'exception des étangs de La Palme et de Vaccarès. Les résultats sont hétérogènes d'une lagune à l'autre, avec également des disparités de qualité au sein d'une même lagune.

Les étangs du complexe Palavasien sont les plus dégradés.

Les résultats de qualité pour les macrophytes sont cartographiés en annexe (7.8.4).

Commentaires et recommandations :

Les travaux réalisés lors de cette campagne ont montré que des données acquises selon des méthodes d'acquisition différentes pouvaient être traitées selon la même grille d'interprétation.

Les traitements des données visant à tester l'effet de la réduction du nombre de stations sur la qualité de la classification a montré qu'il était possible de réduire de moitié le nombre de stations sans changement significatif. Cette observation n'est pas valide pour les lagunes présentant une forte hétérogénéité spatiale de leurs peuplements de macrophytes (Bages).

Concernant les lagunes où des protocoles différents ont été appliqués (notamment la stratégie spatiale), le traitement des données a montré qu'il était possible d'utiliser la même méthode de classification à condition que les surfaces échantillonnées représentent plus de 5% de recouvrement surfacique.

Cependant, pour assurer la reproductibilité des méthodes et la comparaison des résultats il sera important d'entamer une réflexion sur la représentativité de la surface minimale à échantillonner par rapport à la surface totale de la lagune. L'exercice 2006 a montré qu'elles pouvaient varier de 0,2% (Berre) à 1% (Thau). D'autre part il serait nécessaire d'étudier la possibilité de prendre en compte le pourcentage de recouvrement végétal (toutes espèces) en pondération du pourcentage de recouvrement des espèces climax

Les travaux ont également montré qu'il serait possible d'alléger la liste des espèces climax à retenir afin de simplifier les contraintes de terrain et mettre ainsi les outils d'analyse et de traitement des données à la portée de tous les opérateurs de terrain.

4.3.4. Macrofaune benthique de substrat meuble

L'étude de la macrofaune benthique en lagune a fait l'objet d'un rapport¹ à part entière.

4.3.4.1. Granulométrie et physico-chimie des sédiments

Globalement les sédiments sont très envasés, parfois même constitués de vases pures, le taux de particules fines étant supérieur à 40 %. Seul l'étang de La Palme (site de référence) fait exception avec le secteur sud caractérisé par une dominance nette en sables grossiers (62,4 %) et le secteur nord caractérisé par une dominance nette en sables fins (49,4 %).

Concernant la matière organique, les teneurs mesurées sont toujours considérées comme faibles puisque les résultats sont tous largement inférieurs à 13,45 % (seuil séparant les niveaux d'enrichissement faible et moyen, cf. tableau Annexe 7 – chapitre 7.7.5). Les teneurs en éléments nutritifs sont très variables d'une lagune à l'autre et même souvent au sein d'une même lagune. Globalement les teneurs sont plutôt faibles à moyennes. Les stations Leucate nord, Prévost-Est et Méjean-Ouest cumulent des niveaux forts d'azote et de phosphore.

4.3.4.2. Macrofaune benthique

❖ Calcul de l'Indice M-AMBI

Les limites de classe du M-AMBI différent en milieu lagunaire de celles en milieu côtier. Les maxima et minima déterminant les classes de qualité du M-AMBI ont été calculées sur les stations ayant donné les valeurs minimales et maximales pour l'AMBI, la richesse spécifique et la diversité, respectivement l'étang de l'Arnel et l'étang de Vaccarès.

Le tableau récapitulatif du calcul du M-AMBI est donné en annexe (7.9.4), avec les valeurs AMBI et H' calculées pour chaque station et la richesse spécifique.

La valeur M-AMBI moyenne est de 0,42 avec un écart type de 0,21 (Figure 19)

¹ Creocean, 2007 : Contrôle de surveillance de la DCE. Analyse des stations de suivi des lagunes. Campagne 2006.

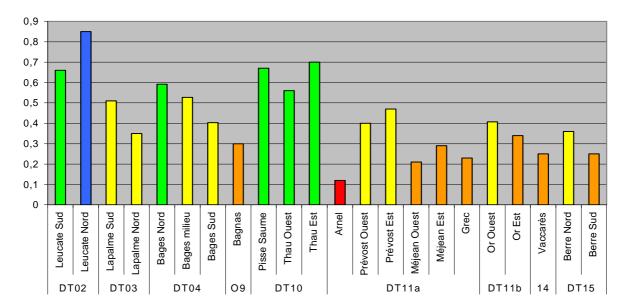


Figure 19: Valeurs du M-AMBI en eaux de transition (2005 – 2006)

L'étang de Leucate affiche la valeur M-AMBI correspondant à la meilleure classe de qualité avec la station Nord à 0,85 et l'étang d'Arnel obtient la plus mauvaise note avec une valeur M-AMBI de 0,12.

Les étangs Palavasiens, Vaccarès et Berre présentent des valeurs globalement médiocres. Plus au Sud, les étangs de Bagnas et de La Palme ont également des valeurs de M-AMBI moyennes à médiocres.

* Richesse spécifique et Densité

La richesse spécifique de chaque station est présentée dans la Figure 20.

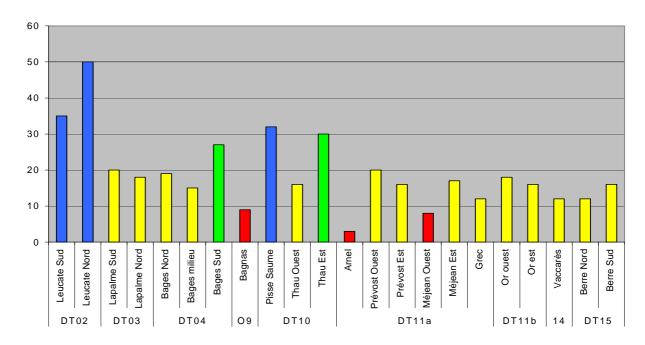


Figure 20 - Valeurs de la richesse spécifique dans les différentes stations (2005-2006)

19 espèces en moyenne ont été observées par station, l'écart type σ est de 11,63 pour l'ensemble des stations.

La station Arnel a la richesse spécifique la plus faible : seulement 3 espèces ont été relevées. Les stations des étangs de Bagnas et de Méjean ouest sont également très pauvres en espèces. La richesse spécifique la plus importante (50 espèces) est celle de la station Leucate Nord. Les deux stations de l'étang de Leucate cumulent d'ailleurs les valeurs maximales de la richesse spécifique indiquant la bonne qualité des peuplements benthiques dans cet étang. La station de Pisse Saumes (Etang de Thau) est également riche en espèces.

La densité moyenne sur l'ensemble des stations est de 2273 ind. / m^2 avec un écart type σ de 2070. Les variations inter-stations sont donc du même ordre de grandeur que la moyenne (Figure 21).

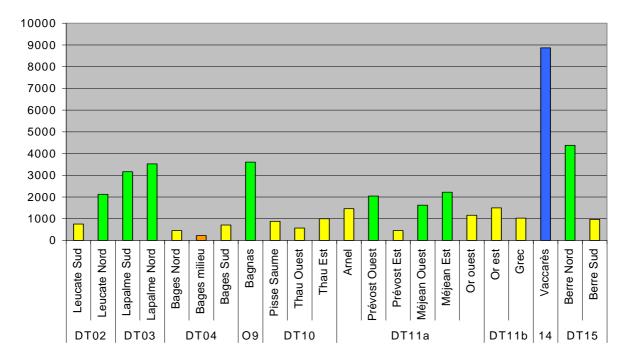


Figure 21 : Valeurs de la densité (nombre d'individus / m²) dans les différentes stations (2005-2006)

Seul l'étang de Vaccarès montre une densité particulièrement élevée (8867 individus / m²). Cette densité est due essentiellement à la présence d'une prolifération du bivalve *Abra ovata* dans cet étang. Les autres stations ont des densités faibles à normales. La densité la plus faible a été observée dans la station Prévost Est : 448 ind. / m².

Il est intéressant de noter les faibles densités observées sur certains étangs profonds et de grande superficie pourtant considérés généralement comme "bien marinisés" (étangs de Leucate, de Thau et station sud de Berre).

** **Espèces dominantes**

Une espèce est considérée comme légèrement dominante quand son effectif est de 25 à 50% de la densité totale, elle est considérée comme dominante quand elle occupe entre 50 et 75% de la densité totale, et comme très dominante quand son effectif dépasse 75% du total.

Les lagunes connaissent souvent des proliférations à cause de la variabilité naturelle du milieu, et les espèces recensées ici comme étant (légèrement à fortement) dominantes ne sont pas des espèces indicatrices d'enrichissement trophique. Néanmoins, certaines espèces dominantes sont inféodées à la biocénose de type "Lagunaire Euryhalin et Eurytherme" indiquant un effet des apports d'eau douce qui ont un effet notable sur la struture peuplement benthique. Ces espèces euryhalines et eurythermes sont Abra ovata (Mollusque), Corophium insidiosum (Crustacé), Hydrobia acuta (Mollusque), Nereis diversicolor (Annélide polychète), Polydora ciliata (Annélide polychète) et les larves de chironomes.

Le calcul des biocénoses représentatives des peuplements en place montre d'ailleurs que beaucoup de stations sont largement dominées par des espèces du type "Lagunaire Euryhalin et Eurytherme" (Annexe 7 – chapitre 7.7.7).

On peut remarquer que les stations qui présentent de très fortes affinités à la biocénose de type "Lagunaire Euryhalin et Eurytherme" sont des stations où la structure des peuplements montre un faciès appauvri. Ces faciès pauvres résultent de conditions contraignantes liées en partie à des variations fortes de salinité dues à des apports d'eau douce. Il y a plusieurs stations dont les peuplements sont presque ou totalement composés d'espèces adaptées à ces conditions de fortes variations de salinité et de température, en particulier les lagunes de La Palme, Bagnas, Arnel, Prévost, Méjean, Grec et Vaccarès.

Commentaires et recommandations

De par les éléments utilisés pour leur calcul, les indices de qualité biologique ne permettent pas de déterminer si une perturbation observée est d'origine naturelle ou artificielle. Plusieurs des lagunes étudiées ici ont un fonctionnement naturel instable qui entraîne des proliférations et des mortalités au niveau des peuplements benthiques.

L'information apportée par les indices devrait donc toujours être interprétée à l'aide des données sur :

- la caractérisation (physico-) chimique du sédiment et des eaux (teneur en substances nutritives dont la matière organique dans le sédiment; salinité, oxygénation et turbidité de l'eau),
- les activités humaines et l'artificialisation des lagunes ainsi que du bassin versant dont elles dépendent,
- les conditions météorologiques dans la période qui précède la campagne de prélèvement.

Il faut noter par ailleurs que la potentialité biologique, du fait qu'elle dépend uniquement de la richesse spécifique et de la densité observée, ne donne qu'une image très partielle de l'état de santé des peuplements d'un secteur.

En troisième lieu il a été observé que les stations qui ont des conditions plutôt stables, ressemblant à celles du milieu marin, semblent obtenir des meilleurs résultats pour l'indice de Shannon que celles qui ont un milieu plus dessalé ou moins stable.

La pertinence des limites de classes de qualité de cet indice pour les secteurs moins "marinisés" devrait être vérifiée. Si nécessaire, les limites devront être ajustées en fonction de la masse d'eau sur laquelle on travaille.

Concernant l'utilisation du M-AMBI en milieu lagunaire, indice dérivé par analyse factorielle de l'AMBI, de l'indice de Shannon et de la richesse spécifique, plusieurs remarques peuvent être faites.

Tout d'abord il est nécessaire de préciser que l'AMBI ne classe pas les stations dans les mêmes catégories que l'indice de Shannon, du fait qu'il s'agit d'un indice qui regroupe et donne un poids différent aux espèces selon leur sensibilité à la pollution (les espèces opportunistes 'pèsent plus lourd'), alors que le calcul de l'indice de Shannon tend à donner plus d'importance aux espèces moyennement abondantes, sans tenir compte de leur sensibilité.

D'autre part, l'AMBI (et consécutivement le M-AMBI) est moins robuste dans les situations où peu de taxons sont présents, par exemple, dans des systèmes à faible salinité ou ayant un état perturbé naturel. Le milieu lagunaire est souvent caractérisé par un état naturellement instable donc perturbé par des contraintes physiques du milieu fortes. En conséquence, il héberge principalement des espèces tolérantes. De plus, certaines espèces qui en milieu marin sont classées comme polluosensibles peuvent apparaître en grande abondance en milieu lagunaire où elles sont simplement plus résistantes (tolérantes). La classification en groupes écologiques de polluosensibilité qui a été faite pour le milieu marin n'est donc pas toujours adaptée pour une utilisation en milieu lagunaire, avec les seuils du milieu marin.

Par conséquence, le M-AMBI avec des limites entre classes de qualités adaptées, pourrait être un indicateur pertinent de la qualité écologique si une classification robuste pour les espèces en milieu lagunaire pouvait être faite. Malgré ces remarques, on notera tout de même que le M-AMBI semble bénéficier d'un pouvoir discriminatoire puisque tous les codes couleurs sont représentés sur les 17 stations étudiées.

4.3.4.3. Synthèse

Le Tableau 54 synthétise les résultats du M-AMBI par masse d'eau, en tenant compte de la station la plus déclassante.

Tableau 54 – Classification du descripteur « benthos » des eaux de transition

Code	Nom de la masse d'eau	Nom de la station	Qualité par station	Qualité par ME
EDDT 00	Colone Louisete	Leucate Sud	1	
FRDT 02	Salses Leucate	Leucate Nord	1	1
EDDT 02	Lo Dolmo	La Palme Sud	3	3
FRDT 03	La Palme	La Palme Nord	3	3
		Bages Nord	2	
FRDT 04	Bages Sigean	Bages Milieu	3	3
		Bages Sud	3	
FRDT 09	Bagnas	Bagnas	4	4
		Thau centre	2	
FRDT 10	Thau	Thau Ouest	3	3
		Thau Est	2	
FRDT 11a	Or	Or Ouest	3	4
FRUITIA	Oi	Or Est	4	4
		Arnel	5	
		Prévost Ouest	3	
FRDT 11b	Palavasiens	Prévost Est	2	5
FRUI III	Falavasieris	Méjean Ouest	4)
		Méjean Est	3	
		Grec	4	
FRDT 14d	Vaccarès	Vaccarès	4	4
FRDT 15a	Berre	Berre Nord	3	3
FRUITOA	Delle	Berre Sud	3	3

1 : Très bon. 2 : bon. 3 : moyen. 4 : médiocre. 5 : mauvais

Seul l'étang de Leucate est de très bonne qualité, justifié par une richesse spécifique importante, malgré un envasement du secteur Nord. Dans le cas extrême opposé, l'étang de l'Arnel se trouve dans un état très dégradé. Il est fortement confiné, presque exclusivement composé d'espèces résistantes à des variations fortes de température et de salinité et présente un taux d'enrichissement relativement fort du milieu.

Le peuplement benthique des étangs de qualité médiocre subit des perturbations liées à un sur-enrichissement trophique ou à des contraintes physiques naturelles du milieu, comme la variation de salinité, de température ou le confinement et la faible profondeur de la colonne d'eau (Méjean Est et étang Grec). De même, des apports importants d'eau douce (étangs de Bagnas et de Berre) ou un enrichissement du sédiment en éléments nutritifs (étangs de Méjean et Grec) déséquilibrent le milieu lagunaire.

Beaucoup de secteurs sont largement dominés par des espèces représentatives des biocénoses de type « Lagunaire Euryhalin et Eurytherme », tolérantes à de grandes variations de salinité et de température (étangs de La Palme, Bagnas, Arnel, Prévost, Méjean et Vaccarès). Le déséquilibre trophique du milieu est la cause principale de la médiocrité des étangs échantillonnés (La Palme, Bagnas, Prevost, Vaccarès).

Les résultats de qualité du Benthos sont cartographiés en annexe (7.10).

5. Synthèse générale

Les résultats complets caractérisant la qualité chimique et écologique des masses d'eau côtières et de transition du district Rhône et côtiers méditerranéens retenues au titre du contrôle de surveillance sont présentés dans le Tableau 55.

Tableau 55 : Classification des différents descripteurs chimiques et écologiques, dans les eaux côtières et de transition, pour l'année 2006.

			Qualité CHIMIQUE		Qualité ECOLOGIQUE			
Type ME	code ME	Nom ME	Chimie	Hydrologie	Phyto (Chl-a)	Posidonie	Benthos	Macroalgues
	FRDC01	Espagne - Racou plage	1	2	2	2	3	étude de préfiguration en cours
	FRDC02a	Racou pl Emb. Aude	1	1	1	-	3	
	FRDC02c	Cap d'Agde	1	1	1	3	2	
	FRDC03	Estuaire Rhône	1	1	1	-	2	
	FRDC04	Golfe de Fos	1	1	1	-	2	
S	FRDC05	Cote bleue	1	-	1	2	2	
iière	FRDC06b	Marseille - Frioul	1	2	2	1	2	
côt	FRDC07a	Iles Marseille - Cortiou	1	-	-	2	2	igura
Eaux côtières	FRDC07b	Croisette – Bec aigle	1	-	1	1	3	préf
Ш	FRDC07e	Pierre plane - Gaou	1	-	1	1	2	e de
	FRDC07g	Cepet - Carqueiranne	0	1	1	1	2	étud
	FRDC07h	lles du soleil	1	-	1	1	2	
	FRDC08d	Fréjus – Pointe galère	1	-	1	1	2	
	FRDC09a	Cap Antibes – Sud Antibes	0	-	-	1	2	
	FRDC09d	Port d'Antibes-Port commerce Nice	0	2	1	-	2	
Type ME	code ME	Nom ME	Chimie	Hydrologie	Phyto (Chl-a)	Macrophytes	Benthos	Ichtyofaune
	FRDT02	Salse- Leucate	1	2	1	3	1	
	FRDT03	La Palme	1	2	1	1	3	2
Eaux de transitio	FRDT04	Bages	1	2	1	3	3	ו כסר
	FRDT09	Bagnas	-	4	4	5	4	on er
	FRDT10	Thau	1	1	3	3	3	urati
	FRDT11a	Or	1	5	5	4	4	réfigı
	FRDT11b	Palavasiens	1	5	5	5	5	étude de préfiguration en cours
	FRDT14d	Vaccarès	1	3	3	1	4	nde
	FRDT15a	Berre	1	2	3	4	3	ēţ
	FRDT 20	Grand Rhône	-	-	3	-	-	

1 : Très bon. 2 : bon. 3 : moyen. 4 : médiocre. 5 : mauvais

En eaux côtières, la qualité des paramètres biologiques est bonne à très bonne, à l'exception de l'indicateur « benthos » qui est classé moyen dans les masses d'eau de l'extrémité Ouest du Languedoc-Roussillon et à Cassis.

Dans les eaux de transition, la qualité est très hétérogène selon les paramètres. Seul l'étang de La Palme (site de référence) est de bonne qualité pour 4 paramètres sur 5. La classification des lagunes sera consolidée avec la typologie des lagunes.

Deux cartes synthétisent la classification chimique et écologique des eaux côtières et de transition du district (Figure 22 et 23).

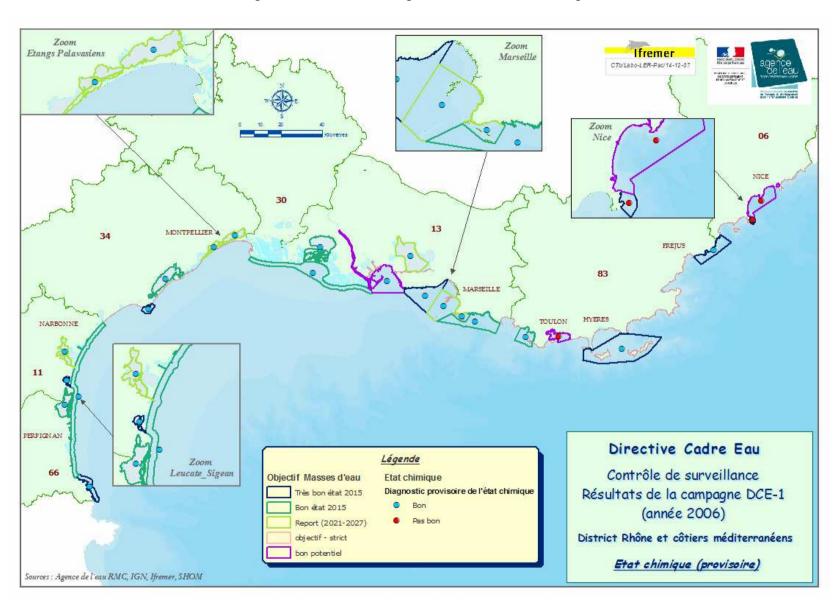


Figure 22 : Classification provisoire de l'état chimique

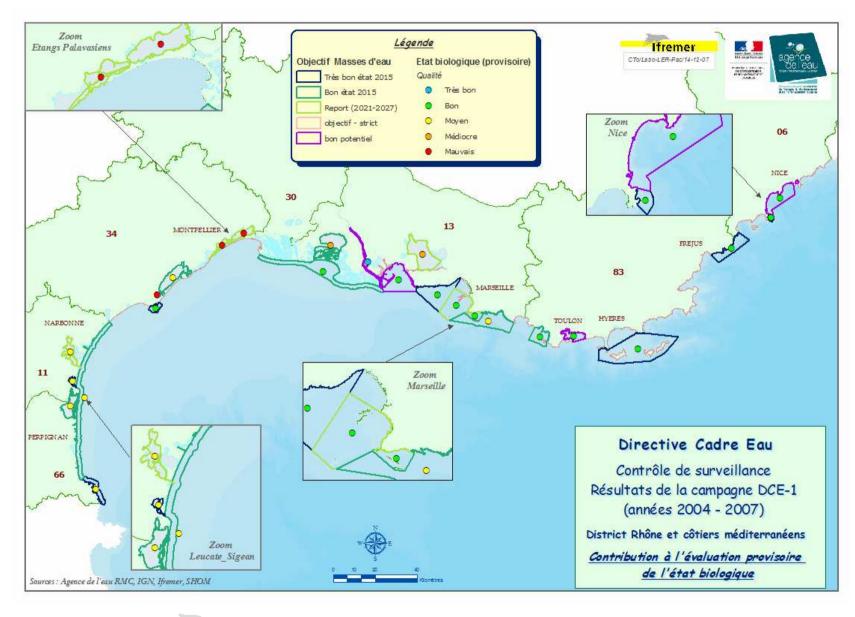


Figure 23 : Classification provisoire de l'état écologique

6. Conclusion

La surveillance de la qualité des eaux littorales est depuis 1990 un sujet mobilisateur pour le bassin Rhône Méditerranéen & Corse. Cette préoccupation inscrite dans le Schéma Directeur d'Aménagement et de Gestion des Eaux s'est concrétisée par un effort méthodologique important au cours de ces dernières années permettant de relever le défi de la mise en œuvre du programme de surveillance lié à la DCE.

La mobilisation des différents acteurs autour d'un objectif commun a permis de faire face à la pluridisciplinarité et à la complexité des aspects logistiques de ce programme. Sur la base de réseaux nationaux et régionaux structurés et de méthodes d'investigation validées sur le terrain, les principes de base qui ont permis de définir la première campagne du contrôle de surveillance dans le district ont pu être arrêtés très tôt.

Préliminaire indispensable au futur plan de gestion, cette campagne a permis de capitaliser les connaissances et les savoir-faire antérieurs et de développer dans l'intervalle les outils méthodologiques nécessaires au respect du programme de surveillance dans sa globalité.

Les résultats de cette première campagne du contrôle de surveillance permettent d'ores et déjà d'avoir une bonne vision d'ensemble de la qualité des eaux littorales à l'échelle du district.

Ils confortent les évaluations faites « à dire d'expert » lors de l'état des lieux du district avec des informations nouvelles concernant plus particulièrement la biologie, notamment le benthos de substrat meuble.

En eaux côtières, les eaux sont globalement de bonne qualité avec des déclassements liés essentiellement à la chimie sur des zones sujettes à des activités maritimes importantes.

En eau de transition, essentiellement lagunaires, il existe une plus grande hétérogénéité des résultats avec des paramètres déclassant relevant plutôt de la biologie, mais sur un nombre important d'indicateurs.

Il est également important de préciser que les résultats acquis ont confirmé les choix faits concernant les sites de référence sur le district.

L'année 2008 sera essentiellement consacrée à un retour d'expérience important sur les acquis et les lacunes de ce premier exercice, pour préparer avant la fin de l'année la mise en œuvre de la campagne 2009 qui se chargera également de l'organisation du contrôle opérationnel.

L'expérience acquise lors de la campagne 2006 permettra d'optimiser les différents plans d'échantillonnage avec des conséquences importantes en terme de coût de mise en œuvre et d'interprétation des données. Sur des bases semblables et validées, il sera possible à l'horizon 2009 d'intégrer le suivi des molécules hydrophyles, des macroalgues et des poissons et d'utiliser l'imagerie satellite en support à l'indicateur phytoplancton ou l'usage de modèles de bioaccumulation en support à la chimie.

110

7. Annexes

7.1. Paramètres et fréquence de suivi

Tableau 56 : Fréquence de suivi du contrôle de surveillance pour les eaux de Méditerranée, en fonction des paramètres de qualité et des types de masses d'eau (circulaire DCE 2007/20)

			x côtières	Eaux d	e transition
	Eléments de qualité	Fréquence de suivi par plan de gestion (nb années / 6 ans)	Fréquence du suivi par année (nb / an)	Fréquence de suivi par plan de gestion (nb années / 6ans)	Fréquence du suivi par année (nb / an)
	Phytoplancton (biomasse)	6	12 mois /an	6 sauf pour les eaux de très bonne ou très mauvaise qualité : 2	12m./an sauf pour les lagunes de très bonne ou très mauvaise qualité : 3
BIOLOGIE	Phytoplancton (abondance composition)		12 mois /an	6 sauf pour les eaux de très bonne ou très mauvaise qualité : 2	12 m./an
	Angiospermes	2	1	2	1
	Macro-algues	2	1	2	1
	Macrofaune	2	1	2	1
	Ichtyofaune	-	-	3	2
	Paramètres généraux	6	fonction de la biologie	6	fonction de la biologie
	Oxygène dissous	6	4mois/an de juin à septembre en même temps que phytoplancton	6	3 mois /an (de juin à août)
-CHIMIE	Nutriments	2	12 mois / an	6 sauf pour les eaux de mauvaise qualité : 2	3 sauf pour bras du Rhône: 6
PHYSICO-CHIMIE	Les 41 substances	1	12 mois / an	1	12 mois /an sauf pour les substances non hydrophiles : 1
	Substances pertinentes	1	4 mois / an (dans l'eau, pour substances hydrophiles)	1	4 mois / an sauf pour les
	Pesticides	1	1 / an (dans le biote ou sédiments pour substances nonhydrophiles)	1	substances non hydrophiles : 1
AUTRE	Hydro- morphologie	1	1 / an	1	1 / an

7.2. Typologie des masses d'eau côtières

Tableau 57 : Définition de la typologie des masses d'eaux côtières et influence du Rhône, dans le district Rhône Méditerranée.

	ТҮРЕ	SALINITE	INFLUENCE PANACHE	MELANGE VERTICAL	RENOUVELLEMENT	PROFONDEUR	FACIES SEDIMENTAIRES
Frontière espagnole – Racou plage (R1)	В	EC		FAIBLE	MOYEN	MOYENNE	Faciès sédimentaires et grossiers
Racou plage – pointe de l'Espiguette (R2)	С	EC		FAIBLE	MOYEN	FAIBLE	Faciës sableux
Delta du Rhône (R3)	D	ET	RHONE	FAIBLE	MOYEN	FAIBLE	Faciès sableux
Delta du Rhône – Cap Couronne (R4)	E	EC		FAIBLE	MOYEN	MOYENNE	Faciës envasé
Cap Couronne – Tunnel du Rove (R5)	F	EC		FAIBLE	MOYEN	MOYENNE	Faciès hétérogène sédimentaire et vaseux
Tunnel du Rove – îles de Marseille (R6)	E	EC		FAIBLE	MOYEN	MOYENNE	Faciès envasé
Ile de Marseille – pointe des Issambres (R7)	G	EC		FAIBLE	FORT	MOYENNE	Faciès sédimentaire et sableux
Pointe des Issambres – Cap d'Antibes (R8)	I	EC		FAIBLE	FORT	GRANDE	Faciès hétérogène sédimentaire et vaseux
Cap d'Antibes – Cap Ferrat (R9)	J	EC		FAIBLE	FORT	GRANDE	Faciès envasé
Cap Ferrat – Frontière italienne (R10)	I	EC		FAIBLE	FORT	GRANDE	Faciès hétérogène sédimentaire et vaseux

EC: Eaux Côtières ET: Eaux de transition

7.3. Localisation des stations de surveillance

Tableau 58 . Localisation des stations utilisées pour le programme de surveillance

Code_MO	Nom_MO	Nom_station	Type_eau	programme	Code_station	lon_dd_w84	lat_dd_w84	Prof
FRDC01	Espagne_Racou plage	Cerbere DCE01	EC	chimie sed		3,14250	42,48762	23,0
FRDC01	Espagne Racou plage	Banyuls	EC	s m		3,14215	42,48817	23,0
FRDC01	Espagne Racou plage	Cerbere	EC	s m		3,17243	42,44547	28,0
FRDC01	Espagne_Racou plage	Colioure	EC	s m		3,08935	42,53178	22,0
FRDC01	Espagne_Racou plage	Cerbere	EC	posidonie		3,16232	42,46335	17,0
FRDC01	Espagne_Racou plage	Banyuls2	EC	chimie mv	01A03	3,16585	42,46200	21,0
FRDC01	Espagne_Racou plage	Banyuls	EC	phyto	Sola (SOMLIT)	3,14500	42,48833	0,5
FRDC01	Espagne_Racou plage	Banyuls	EC	hydro/chloro	Sola (SOMLIT)	3,14500	42,48833	0,5
FRDC01	Espagne_Racou plage	Port vendres 2	EC	chimie mv	01C	3,12322	42,52277	17,0
FRDC02a	Racou plage_Aude	Argeles DCE02	EC	chimie sed	mosed agly1	3,06500	42,59000	21,0
FRDC02a FRDC02a	Racou plage_Aude Racou plage_Aude	Canet plage Port la nouvelle	EC EC	chimie mv chimie mv	02B 07A	3,06247 3,07917	42,72295 42,98860	26,5 21,0
FRDC02a	Racou plage_Aude	Leucate	EC	s m	0/A	3,06615	42,85185	22,0
FRDC02a	Racou plage_Aude	Gruissan	EC	s m		3,20452	43,15330	22,0
FRDC02a	Racou plage_Aude	Gruissan DCE03	EC	chimie sed	mosed narbonne plage	3,18000	43,12500	21,0
FRDC02a	Racou plage_Aude	Gruissan	EC	phyto	rephy gruissan	3,13621	43,10163	0,5
FRDC02a	Racou plage_Aude	Gruissan	EC	hydro/chloro	rephy gruissan	3,13621	43,10163	0,5
FRDT02	Etang Salses Leucate	Etg salses	ET	chimie mv	04A	3,01000	42,82000	3,4
FRDT02	Etang Salses_Leucate	Etg leucate	ET	chimie mv	04B	3,02332	42,87302	3,0
FRDT02	Etang Salses_Leucate	Etg.leucate sud	ET	s m		2,99278	42,82357	3,3
FRDT02	Etang Salses_Leucate	Etg. leucate nord	ET	s m		3,01657	42,88328	3,0
FRDT02	Etang Salses_Leucate	Etg.leucate centre	ET	phyto	rephy parc leucate 2	3,01431	42,87278	1,5
FRDT02	Etang Salses_Leucate	Etg.leucate sud	ET	phyto	RSL eau LES	2,99278	42,82357	1,3
FRDT02	Etang Salses_Leucate	Etg. leucate nord	ET	phyto	RSL eau LEN	3,01657	42,88328	0,5
FRDT02	Etang Salses_Leucate	Etg.leucate sud	ET	hydro/chloro	RSL eau LES	2,99278	42,82357	0,5
FRDT02	Etang Salses_Leucate	Etg. leucate nord	ET	hydro/chloro	RSL eau LEN	3,01657	42,88328	0,5
FRDT03	Etang La Palme	Etg La Palme	ET	chimie mv	05A	3,00557	42,95475	1,2
FRDT03	Etang La Palme	Etg. La palme	ET ET	phyto bridge/ablege	RSL eau LAP RSL eau LAP	3,00673	42,96678	0,5
FRDT03 FRDT03	Etang La Palme Etang La Palme	Etg. La palme Lapalme sud	ET	hydro/chloro s m	RSL eau LAP LAPS	3,00673 3,01382	42,96678 42,95433	0,5 0,6
FRDT03	Etang La Palme	Lapaime sud Lapaime	ET	s m	LAP (point RSL)	3,00673	42,95433	1,5
FRDT04	Etangs Bages_Sigean	Etg bages sud	ET	chimie mv	06A	3,01570	43,04929	0,5
FRDT04	Etangs Bages_Sigean	Etg bages nord	ET	chimie mv	06B	3,00470	43,07763	1,5
FRDT04	Etangs Bages_Sigean	Etg. bages grau	ET	chimie mv	06F	3,03818	43,02762	1,3
FRDT04	Etangs Bages Sigean	Etg bages nord	ET	phyto	RSL eau BGN	3,00093	43,12587	0,5
FRDT04	Etangs Bages_Sigean	Etg bages centre	ET	phyto	RSL eau BGM	3,00550	43,07783	0,5
FRDT04	Etangs Bages_Sigean	Etg bages sud	ET	phyto	RSL eau BGS	3,01580	43,05088	0,5
FRDT04	Etangs Bages_Sigean	Etg bages nord	ET	hydro/chloro	RSL eau BGN	3,00093	43,12587	0,5
FRDT04	Etangs Bages_Sigean	Etg bages centre	ET	hydro/chloro	RSL eau BGM	3,00550	43,07783	0,5
FRDT04	Etangs Bages_Sigean	Etg bages sud	ET	hydro/chloro	RSL eau BGS	3,01580	43,05088	0,5
FRDC02c	Cap Agde	Agde ouest	EC	s m		3,47168	43,24020	18,0
FRDC02c	Cap Agde	Agde est	EC	s m		3,53858	43,27278	20,0
FRDC02c	Cap Agde	Agde DCE04	EC	chimie sed		3,54430	43,23305	20,0
FRDC02c	Cap Agde	Agde	EC	posidonie		3,49245	43,25947	4,0
FRDC02c	Cap Agde	Agde 2	EC	chimie mv	07G	3,50297	43,24538	20,0
FRDC02c	Cap Agde	Agde	EC EC	hydro/chloro		3,52093	43,25897	0,5
FRDC02c	Cap Agde	Agde		phyto	DOI DAN	3,52093	43,25897	0,5
FRDT09 FRDT09	Grand Bagnas	Etg Grand Bagnas	ET ET	s m	RSL eau BAN RSL eau BAN	3,52152 3,52152	43,32732	0,7
FRDT09	Grand Bagnas Grand Bagnas	Etg Grand Bagnas Etg Grand Bagnas	ET	phyto hydro/chloro	RSL eau BAN	3,52152	43,32732 43,32732	0,5
FRDT10	Etang Thau	Etg thau nord	ET	chimie mv	09B	3,65187	43,43397	3,5
FRDT10	Etang Thau	Etg thau sud	ET	chimie mv	09A	3,56387	43,37297	8,5
FRDT10	Etang Thau	Etg thau nord	ET	s m	RSL eau TE	3,63833	43,41667	8,7
FRDT10	Etang Thau	Etg thau centre	ET	s m	TOD COM TD	3,58700	43,37583	5,8
FRDT10	Etang Thau	Etg thau sud	ET	s m	RSL eau PIS	3,55130	43,35050	3,8
FRDT10	Etang Thau	Etg thau sud	ET	phyto	RSL eau PIS	3,55130	43,35050	0,5
FRDT10	Etang Thau	Etg thau nord	ET	phyto	RSL eau TE	3,63833	43,41667	0,5
FRDT10	Etang Thau	Bouzigues	ET	phyto	rephy bouzigues	3,66453	43,43430	0,5
FRDT10	Etang Thau	Etg thau sud	ET	hydro/chloro	RSL eau PIS	3,55130	43,35050	0,5
FRDT10	Etang Thau	Etg thau nord	ET	hydro/chloro	RSL eau TE	3,63833	43,41667	0,5
FRDT11c	Palavasiens ouest	Ingril Sud	ET	s m		3,78290	43,44165	0,8
FRDT11c	Palavasiens ouest	Ingril Nord	ET	s m	-	3,78592	43,44978	0,5
FRDT11c	Palavasiens ouest	Etg de vic	ET	s m		3,82593	43,49148	1,1
FRDT11c	Palavasiens ouest	Etg PierreBlanche ouest	ET	s m	-	3,85162	43,49192	0,4
FRDT11c	Palavasiens ouest	Etg Pierre-Blanche est	ET	s m	DOT 1 TO	3,87165	43,50632	0,2
FRDT11b	Palavasiens est	Etg amel	ET	s m	RSL eau ARN	3,88685	43,52567	0,5
FRDT116	Palavasiens est	Etg Prevost ouest	ET	s m	-	3,89253	43,51748	0,8
FRDT116 FRDT116	Palavasiens est Palavasiens est	Etg prevost est Etg prevost	ET ET	s m chimie mv	11B	3,91687 3,90737	43,52913 43,51981	0,9
FRDT116	Palavasiens est	Etg Prevost ouest	ET	phyto	Rsl eau PRW	3,89254	43,51748	0,8
FRDT116	Palavasiens est	Etg Prevost ouest	ET	hydro/chloro	Rsl eau PRW	3,89254	43,51748	0,5
FRDT116	Palavasiens est	Etg. Prevost	ET	phyto	Rephy Etang prevost	3,90772	43,52381	0,5
FRDT116	Palavasiens est	Etg. Mejean	ET	phyto	RSL eau MEW	3,92292	43,54432	0,5
FRDT11b	Palavasiens est	Etg. Mejean	ET	hydro/chloro	RSL eau MEW	3,92292	43,54432	0,5
FRDT11b	Palavasiens est	Etg mejean ouest	ET	s m	RSL eau MEW	3,92292	43,54432	0,7
FRDT11b	Palavasiens est	Etg mejean est	ET	s m	RSL eau MEE	3,94798	43,54605	0,9
FRDT11b	Palavasiens est	Etg mejean ouest	ET	chimie mv	12I	3,92917	43,54217	1,0
FRDT116	Palavasiens est	Etg grec	ET	s m		3,93868	43,53733	0,6
FRDT11b	Palavasiens est	Etg grec	ET	chimie mv	11H	3,93863	43,53733	0,5

Code_MO	Nom_MO	Nom_station	Type_eau	ргодгание	Code_station	lon_dd_w84	lat_dd_w84	Prof
FRDT11a	Etang de Or	Etg de l'or est	ET	chimie mv	12E	4,04032	43,58038	1,2
FRDT11a	Etang de Or	Etg. Or	ET	phyto	RSL eau ORW	4,00095	43,57368	0,5
FRDT11a	Etang de Or	Etg. Or	ET	phyto	RSL eau ORE	4,04150	43,58117	0,5
FRDT11a FRDT11a	Etang de Or Etang de Or	Etg. Or Etg. Or	ET ET	hydro/chloro hydro/chloro	RSL eau ORW RSL eau ORE	4,00095 4,04150	43,57368 43,58117	0,5
FRDT14d	Etang de Vaccares	Etg vaccares	ET	chimie mv	14A	4,50781	43,50481	0,5
FRDT14d	Etang de Vaccares	Vaccares	ET	hydro/chloro	1-11	4,60277	43,53572	0,5
FRDT14d	Etang de Vaccares	Vaccares	ET	s m		4,62925	43,53645	1,6
FRDT20	Grand Rhone	Grand rhône	ET	phyto		4,80264	43,38590	0,5
FRDT20	Grand Rhone	Grand rhône	ET	hydro/chloro	Rno hydro 7	4,74553	43,41947	0,5
FRDT15a	Etang de berre	Etg Berre sud	ET	chimie mv	17C	5,06265	43,41518	5,5
FRDT15a	Etang de berre	Berre sud	ET	phyto		5,10243	43,42643	0,5
FRDT15a FRDT15a	Etang de berre	Berre sud Berre sud	ET ET	hydro/chloro		5,10243 5,10840	43,42643 43,41602	0,5 4,5
FRDT15a	Etang de berre Etang de berre	Berre nord	ET	s m		5,08403	43,41602	5,5
FRDC03	Delta du Rhône	Espiguette	EC	s m		4,20520	43,43535	19,0
FRDC03	Delta du Rhône	Beauduc	EC	s m		4,50263	43,41378	14,0
FRDC03	Delta du Rhône	Faraman	EC	s m		4,71995	43,33355	10,0
FRDC03	Delta du Rhône	Beauduc DCE05	EC	chimie sed	rnosed pti rhone 10	4,49667	43,41667	14,0
FRDC03	Delta du Rhône	Faraman DCE06	EC	chimie sed		4,71669	43,33328	10,0
FRDC03	Delta du Rhône	Stes maries	EC	chimie mv	15A	4,43269	43,44118	11,0
FRDC03 FRDC03	Delta du Rhône	Stes maries	EC EC	phyto	rephy rousty	4,49493	43,45643	0,5
FRDC03	Delta du Rhône Delta du Rhône	Stes maries Faraman	EC	hydro/chloro phyto	rephy rousty rephy courbe	4,49493 4,69843	43,45643 43,34870	0,5
FRDC03	Delta du Rhône	Faraman	EC	hydro/chloro	rephy courbe	4,69843	43,34870	0,5
FRDC03	Delta du Rhône	Emb. Rhone	EC	chimie my	15B	4,71669	43,33328	11,0
FRDC04	Golfe de Fos	Fos	EC	s m		4,92912	43,36078	20,0
FRDC04	Golfe de Fos	carteau	EC	s m		4,89500	43,38555	20,0
FRDC04	Golfe de Fos	Fos DCE07	EC	chimie sed	mosed fos rade VTC1	4,92833	43,40000	20,0
FRDC04	Golfe de Fos	carteau	EC	phyto	rephy anse carteau 2	4,88185	43,37832	0,5
FRDC04	Golfe de Fos	carteau	EC	hydro/chloro	rephy anse carteau 2	4,88185	43,37832	0,5
FRDC04 FRDC04	Golfe de Fos	Fos centre	EC EC	hydro/chloro	rno hydro fos 2 16A03	4,95058	43,35065	0,5 10,0
FRDC05	Golfe de Fos Cote bleue	Plage napoleon Carry	EC	chimie mv s m	10A03	4,92275 5,17827	43,36062 43,32142	21,0
FRDC05	Cote bleue	Le rove DCE08	EC	chimie sed	rnosed baie marseille 4	5,25500	43,32333	71,0
FRDC05	Cote bleue	Couronne	EC	posidonie	moses one maseme +	5,06349	43,32427	21,0
FRDC05	Cote bleue	Carry	EC	posidonie		5,16683	43,32142	27,0
FRDC05	Cote bleue	Carry	EC	chimie mv	18A	5,15914	43,32195	20,0
FRDC05	Cote bleue	Carry	EC	hydro/chloro		5,15914	43,32195	0,5
FRDC05	Cote bleue	Carry	EC	phyto		5,15914	43,32195	0,5
FRDC06b	Endoume Croisette Frioul	Prado	EC	sm	44 : 34 0	5,34483	43,25625	25,0
FRDC06b FRDC06b	Endoume_Croisette_Frioul Endoume Croisette Frioul	Les goudes DCE09 Marseille grande rade	EC EC	chimie sed posidonie	mosed baie marseille 8	5,32333 5,33950	43,23000 43,27286	51,0 22,0
FRDC066	Endoume Croisette Frioul	Marseille sud 2	EC	chimie my	19F	5,30543	43,26850	32,0
FRDC06b	Endoume Croisette Frioul	Endoume	EC	hydro/chloro	somlit	5,29167	43,24167	0,5
FRDC06b	Endoume_Croisette_Frioul	Endoume	EC	phyto	somlit	5,29167	43,24167	0,5
FRDC07a	Iles marseille_Cortiou	ile maire	EC	s m		5,34833	43,20825	26,0
FRDC07a	Iles marseille_Cortiou	ile jarre	EC	s m		5,37992	43,19592	26,0
FRDC07a FRDC07a	Iles marseille_Cortiou Iles marseille Cortiou	Cortiou DCE10 ile plane	EC EC	chimie sed chimie mv	mosed cortiou emissair 20C		43,20833 43,18940	35,0 31,0
FRDC07a	Iles marseille Cortiou	ile riou	EC	posidonie	200	5,38630 5,38283	43,18503	18,0
FRDC076	Cap croisette_Bec aigle	Cassis	EC	s m		5,53727	43,20472	26,0
FRDC07b	Cap croisette Bec aigle	Cassis DCE11	EC	chimie sed		5,53120	43,19998	39,0
FRDC07b	Cap croisette_Bec aigle	Cassis	EC	posidonie		5,53314	43,20646	23,0
FRDC07b	Cap croisette_Bec aigle	cap canaille	EC	chimie mv	21F	5,55293	43,18723	30,0
FRDC076	Cap croisette_Bec aigle	cap canaille	EC	hydro/chloro		5,55289	43,18726	0,5
FRDC07b	Cap croisette_Bec aigle	cap canaille	EC	phyto		5,55289	43,18726	0,5
FRDC07e	Hot pierre plane_Point Gaou	Bandol DCE12	EC	chimie sed	mosed bandoll	5,72500	43,10182 43,12667	20,0 56,0
FRDC07e	Ilot pierre plane_Point Gaou	Baie sanary	EC	posidonie	mosca canacii	5,78293	43,09150	29,0
FRDC07e	Ilot pierre plane_Point Gaou	ile embiez	EC	chimie my	21E	5,73778	43,07778	61,0
FRDC07e	Hot pierre plane_Point Gaou	ile embiez	EC	hydro/chloro		5,73778	43,07778	0,5
FRDC07e	Ilot pierre plane_Point Gaou	ile embiez	EC	phyto		5,73778	43,07778	0,5
FRDC07g	Cepet_Carqueiranne	Toulon gde rade	EC	s m		5,94728	43,09652	25,0
FRDC07g	Cepet_Carqueiranne	Toulon gde rade DCE13	EC	chimie sed	mosed narbonne plage	5,94167	43,09167	31,0
FRDC07g FRDC07g	Cepet_Carqueiranne Cepet_Carqueiranne	Cap carqueiranne St mandrier	EC EC	posidonie chimie mv	22B	6,01455 5,95471	43,08124 43,07899	25,0 21,0
FRDC07g	Cepet_Carqueiranne	St mandrier	EC	hydro/chloro	220	5,95471	43,07899	0,5
FRDC07g	Cepet_Carqueiranne	St mandrier	EC	phyto		5,95471	43,07899	0,5
FRDC07h	Iles du soleil	ile levant	EC	s m		6,42792	43,00707	27,0
FRDC07h	Iles du soleil	porquerolles	EC	s m		6,21993	43,04117	29,0
FRDC07h	Iles du soleil	lavandou	EC	s m		6,34197	43,07495	35,0
FRDC07h	Iles du soleil	Rade hyeres DCE17	EC	chimie sed		6,26433	43,07017	21,0
FRDC07h FRDC07h	Iles du soleil	ile levant	EC EC	posidonie	23D	6,44158	43,00605	15,0
FRDC07h	Iles du soleil Iles du soleil	ile levant 2 port cros	EC	chimie mv hydro/chloro	23D	6,53000 6,41975	43,05182 43,01486	22,0 0,5
FRDC07h	Iles du soleil	port cros	EC	phyto		6,41975	43,01486	0,5
FRDC08d	Ouest frejus_Pointe galere	St Raphael	EC	sm		6,86670	43,42355	25,0
FRDC08d	Ouest frejus_Pointe galere	St Raphael DCE16	EC	chimie sed		6,86913	43,42115	40,0
FRDC08d	Ouest frejus_Pointe galere	St Raphael	EC	posidonie		6,90371	43,42218	27,0
FRDC08d	Ouest frejus_Pointe galere	Frejus est	EC	chimie mv	27B	6,90484	43,42220	50,0
FRDC08d	Ouest frejus_Pointe galere	Frejus est	EC	hydro/chloro		6,90484	43,42220	0,5
FRDC08d	Ouest frejus_Pointe galere	Frejus est	EC	phyto		6,90484	43,42220	0,5
FRDC09a FRDC09a	Cap antibes_Sud port antibes Cap antibes_Sud port antibes	Antibes sud Antibes sud DCE15	EC EC	s m chimie sed		7,13975 7,14052	43,55953 43,55973	23,0 21,5
FRDC09a	Cap antibes_Sud port antibes	Antibes sud	EC	posidonie		7,14002	43,55708	15,0
FRDC09a	Cap antibes_Sud port antibes	Antibes 2	EC	chimie my	29E	7,14448	43,55733	29,5
FRDC09b	Sud port antibes_Port commerce nice	Antibes nord	EC	s m		7,13532	43,59418	23,0
FRDC09b	Sud port antibes_Port commerce nice	Nord Apt nice	EC	s m		7,23673	43,68083	20,0
FRDC09b	Sud port antibes_Port commerce nice	Baie de Nice DCE14	EC	chimie sed	mosed baie nice 1	7,24500	43,68333	29,0
FRDC09b	Sud port antibes_Port commerce nice	Nice ville	EC	chimie mv	29F	7,26737	43,69250	65,0
FRDC09d	Rade Villefranche	Villefranche	EC	hydro/chloro	Rephy Villefranche	7,31560	43,68401	0,5
FRDC09d	Rade Villefranche	Villefranche	EC	phyto	Rephy Villefranche	7,31560	43,68401	0,5

7.4. CHIMIE

7.4.1. Méthodes analytiques

Contaminant	Méthode Analytique	Limite de détection
Plomb	GFAAS	0,1 mg/kg
Cadmium	GFAAS	0,1 mg/kg 0,1 mg/kg
Mercure	Vapeurs froides fluorescence atomique	0,01 mg/kg
Nickel	GFAAS	0,0 mg/kg
Zinc	AAS ou ICP	0,5 mg/kg
Chrome	GFAAS	
Arsenic	Hydrure -fluorescence atomique	0,1 mg/kg
Cuivre	AAS ou ICP	0,1 mg/kg
DDTs	GC/ECD	0,1 mg/kg 1 μg/kg
Pentachorobenzène	GC/ECD GC/ECD	
Hexachlorobenzène	GC/ECD GC/ECD	10 μg/kg
Aldrine	GC/ECD GC/ECD	1 μg/kg
Isodrine	GC/ECD GC/ECD	1 μg/kg
		1 μg/kg
Endosulfan	GC/ECD	1 μg/kg
Chlorfenvinphos	GC/MS	10 μg/kg
Dieldrine	GC/ECD	1 μg/kg
Endrine	GC/ECD	1 μg/kg
Trifluarine	GC/MS	10 μg/kg
Pentachlorophénol	GC/ECD	10 μg/kg
1,3-Hexachlorobutadiène	GC/MS	10 μg/kg
PCBs	GC/ECD	1 à 10 μg/kg
HAPs	GC/MS	1 à 10 μg/kg
Diphenyl ether bromés (pentabromodiphenylether)	GC/MS-CI négative	1 μg/kg
Organoétain (tributylétain)	GC/MS	2 μg/kg
Di (2 -ethylhexyl) phtalate	GC/MS	100 μg/kg
Dérivés du phénol (4 para nonyl et para octyl)	GC/MS	10 μg/kg
Chloroalcanes (C10 - C13)	GC/MS-NCI	100 μg/kg
Chlorpyrifos	GC/MS	10 μg/kg
Trichlorobenzène (1,2,4)	Purge and trap /GC	10 μg/kg

GF: Four graphite
AAS: Spectométrie d'absorption atomique
ICP : Torche à plasma
GC: Chromatographie en phase gazeuse
MS : Spectométrie de masse
ECD : Détecteur à capture d'électron

7.4.2. Résultats

Tableau 59 : Résultats pour le descripteur Chimie (molécules bioaccumulables)

		Anthracène (µg/l)	Pentabromodiphenyléther (µg/l)	Cadmium (µg/l)	C10-C13 Chloroalcanes (μg/l)	Chlorpyrifos (µg/I)	Diethylhexylphtalate(DEHP) (µg/l)	Endosulfan (µg/1)	Fluoranthène (µg/1)	Hexachorobenzène (µg/l)	Hexachlorobutadiène (µg/I)	SHCHs (μg/l)	Plomb (µg/l)	Mercure (μg/1)
	N° UE - DCE	2	5	6	7	9	12	14	15	16	17	18	20	21
	N°CAS Log Kow	120-12-7 4.45	32534-81-9 6.57	7740-43-9	85535-84-8 8,69	2291-88-2 4,7	117-81-7 7.5	115-29-7 4.74	206-44-0 5,33	118-74-1 5.5	87-68-3 4,78	608-73-1 3,69	7439-92-1	7439-97-1
	BCF	260	44550	994	40900	1972	2500	600	10000	7000	2000	240	2279	100000
	NQE EC	0,3	0.0002	5	0.4	0.03	1,3	0.0005	0,1	0.03	0,02	0.02	7,2	0.5
	NGE ET	0,3	0.0002	2,5	0,4	0,03	1,3	0,0005	0,1	0.03	0,02	0.02	7.2	0,5
	Limite analytique	0.000769	4,49E-05	0.020121	4.89E-05	0.0020	0,008	0.000333	0,00002	2,86E-05	0,001	0,001242	0,008776	0.00002
	30 % NQE	0.09	0.00006	0.75	0.12	0.00900	0,39	0.00015	0.03	0.009	0.006	0.006	2.16	0.15
FRDT02	04B Etg Leucate	0,005059	0,000044	0,144176	0,000048	0,001991	0,007853	0,001047	0,000057	0,000028	0,000982	0,003632	0,051685	0,000098
FRDT03	05A Etg La Palme	0,000679	0,000040	0,195359	0,000043	0,001790	0,007061	0,000765	0,000062	0,000025	0,000883	0,002207	0,085207	0,000159
FRDT04	06A Etg Bages Sud	0,000798	0,000047	0,426034	0,000051	0,002105	0,008303	0,000969	0,000044	0,000030	0,001038	0,002595	0,100196	0,000062
FRDT10	09A Etg Thau sud	888000,0	0,000052	0,234606	0,000056	0,002342	0,009236	0,001732	0,000072	0,000033	0,001154	0,003079	0,111443	0,000162
FRDT11b	11B Etg prevost	0,000848	0,000050	0,137601	0,000054	0,002237	0,008824	0,002574	0,000126	0,000032	0,001103	0,002758	0,087119	0,000132
FRDT11b	12 I Etg. Mejean ouest	0,000921	0,000054	0,115612	0,000059	0,002428	0,009577	0,002953	0,000026	0,000034	0,001197	0,002993	0,094547	0,000192
FRDT11a	12E Etg de l'Or est	0,000549	0,000032	0,269885	0,000035	0,001447	0,007021	0,000571	0,000023	0,000020	0,000713	0,001784	0,112703	0,000186
FRDT14d	14A Etg Vaccares	0,000998	0,000053	0,161299	0,000058	0,002391	0,009431	0,002083	0,000113	0,000034	0,001179	0,002947	0,062075	0,000141
FRDT15a	17C Etg. Berre sud	0,000713	0,000042	0,139947	0,000045	0,001881	0,007419	0,001638	0,000056	0,000026	0,000927	0,002318	0,065108	0,000093
FRDC01 FRDC02a	01A03 Banyuls 07A Port la nouvelle	0,000792	0,000046	0,157468	0,000050	0,002089	0,008238	0,000087	0,000043 0.000127	0,0000029	0,001030	0,003776	0,090369	0,000165
FRDC02a FRDC02c	07G Adde 2	0.001052	0.000061	0.115596	0.000067	0.002527	0.010943	0,000001	0.0000127	0,000038	0.001246	0.003420	0.060021	0,000174
FRDC02e FRDC03	15A Stes maries	0.000976	0.000057	0,135319	0.000067	0.002775	0,010943	0.000312	0.000094	0.000039	0.001269	0.003420	0,060021	0.000076
FRDC03	15B Emb. Rhone	0.001009	0.000057	0.145201	0.000064	0.002661	0.010497	0.001734	0.000063	0.000037	0.001263	0.007217	0.080602	0.000078
FRDC04	16B Ponteau	0.000879	0.000051	0,179429	0.000056	0.002319	0.009146	0.000075	0.000089	0.000033	0.001143	0.002858	0.110365	0.000183
FRDC05	18A Carry	0.006904	0.000050	0.167219	0.000054	0.002248	0.008865		0.000031	0.000033	0.001108	0.002770	0.136143	0.000155
FRDC06b	19B Marseille sud	0.000815	0.000048	0.166233	0.000052	0.002148	0.008474	0.001200	0.000023	0.000030	0.001059	0.002648	0.120839	0.000148
FRDC07a	20C lle plane	0,000659	0,000038	0,168858	0,000042	0,001737	0,006851	0,002255	0,000034	0,000024	0,000856	0,005923	0,097697	0,000103
FRDC07b	21F Cap Canaille	0,000701	0,000041	0,166954	0,000045	0,001850	0,007295	0,000942	0,000031	0,000026	0,000912	0,002508	0,096024	0,000109
FRDC07e	21E lle Embiez	0,000781	0,000046	0,202287	0,000050	0,002060	0,008124	0,001422	0,000030	0,000029	0,001016	0,002539	0,106944	0,000122
FRDC07g	22B Toulon gde rade	0,000733	0,000043	0,141809	0,000047	0,001932	0,007619	0,001524	0,000034	0,000027	0,000952	0,002381	0,150448	0,000210
FRDC07h	23D Ile Levant	0,000710	0,000041	0,254569	0,000045	0,001873	0,007388		0,000041	0,000026	0,000924	0,002309	0,121568	0,000148
FRDC08d	27B Frejus Est	0,000726	0,000042	0,199360	0,000046	0,001914	0,007549	0,000629	830000,0	0,000027	0,000944	0,005033	0,115936	0,000189
FRDC09a	29E Antibes 2	0,000698	0,000041	0,184491	0,000044	0,001841	0,007263	0,000696	0,000054	0,000026	0,000908	0,004766	0,111538	0,000145
FRDC09b	29G Port de Nice	0,000758	0,000044	0,174381	0,000048	0,001998	0,011661	0,001543	0,000049	0,000028	0,000985	0,006484	0,095072	0,000158

		Naphtalène (µg/l)	Nickel (µg/l)	Nonyiphenols (µg/l)	4-para-nonylphenol (µg/l)	4-tert-octylphénol (µg/l)	Pentachlorobenzène (µg/l)	Pentachlorophenol (µg/l)	Benzo (a) pyrène (µg/I)	Benzo(b)fluo+Benzo(k)fluo (µg/l)	Benzo(ghi)≁Indéno(1,2,3) (µg/l)
	N° UE - DCE	22	23	24	24	25	26	27	28	28	28
	N°CAS	91-20-3	7440-02-0	25154-52-3	84852-15-3	140-66-9	608-93-5	87-86-5	50-32-8	0.04	6.50
	Log Kow BCF	3,7 38	? 270	4,48 3000	4,48 3000	5 634	5,18 2000	5,12 390	5,97 12000	6,84 46182	6,58 44660
			270	0,3		0,01	0,0007		0,05		0,002
	NQE EC NQE ET	1,2 1,2	20	0,3	0,3 0,3	0,01	0,0007	2	0,05	0,03	0,002
		0,005263	0,074074	0,066667	0,006667	0,003155	0.0007	0,005128	1,67E-05	9,87E-06	4,47E-05
	Limite analytique 30 % NQE	0,005263	6	0.09	0.09	0.003	0.00021	0,005126	0.015	0.009	0.0006
FRDT02	04B Etg Leucate	0.024798	1.672326	0.065439	0.010208	0.003096	0.000982	0,005034	0.000031	0,00011	0,000590
FRDT03	05A Etg La Palme	0.004646	1.242273	0.058845	0.021655	0.002784	0,000302	0,003034	0.000031	0.0000011	0.000651
FRDT04	06A Etg Bages Sud	0.005463	1.922103	0.069196	0.012178	0.003274	0.001038	0.005323	0.000019	0.000010	0.000660
FRDT10	09A Etg Thau sud	0,003463	0,684116	0,003130	0,012170	0,003274	0,001030	0,005920	0,000046	0,000011	0,000508
FRDT11b	11B Etg prevost	0,005805	1,062174	0,073535	0,008162	0.003480	0,001103	0,005657	0.000018	0.000011	0,000530
FRDT116	12 I Etg. Mejean ouest	0.006300	0.620702	0,079804	0.010295	0.003776	0,001103	0.006139	0.000040	0.000012	0.000492
FRDT11a	12E Etg de l'Or est	0.003755	1.109845	0.047565	0.004756	0,002251	0,001137	0.003659	0.000027	0.000008	0.000797
FRDT14d	14A Etg Vaccares	0.006205	1,746524	0,047585	0,007859	0,002231	0,000713	0.006046	0,000037	0,000014	0,000499
FRDT15a	17C Etg. Berre sud	0.004881	1.099118	0,070334	0.006183	0.002925	0,001173	0,004756	0,000034	0.000014	0,000622
FRDC01	01A03 Banyuls	0.005420	0.839064	0.068651	0.009817	0.003248	0,0000027	0.005281	0.000026	0.000010	0,000564
FRDC02a	07A Port la nouvelle	0.032790	0,033004	0.083069	0.010965	0.003931	0,001036	0.006390	0.000054	0.000012	0.000475
FRDC02¢	07G Agde 2	0.007199	0.607947	0.091192	0.013861	0.004315	0,001248	0.007015	0.000023	0.000012	0.000478
FRDC02	15A Stes maries	0.006679	0.657965	0.084595	0.008460	0.004003	0,001369	0.006507	0.000047	0.000020	0,000467
FRDC03	15B Emb. Rhone	0.006906	0,583152	0,087473	0.008747	0.004139	0,001203	0.006729	0.000103	0.000013	0.000454
FRDC03	16B Ponteau	0.013238	0,363132	0,007473	0.007622	0.003607	0,001312	0,005863	0,000040	0.000011	0,000513
FRDC05	18A Carry	0.010498	0,702103	0,073874	0.007387	0.003496	0,001143	0.005683	0.000079	0.000011	0.000528
FRDC06b	19B Marseille sud	0,005575	0.627675	0.070613	0.007061	0.003341	0,0011059	0.005432	0.000018	0.000010	0.000550
FRDC07a	20C lle plane	0.004507	0,627073	0.057090	0.005709	0.002701	0,001055	0.004392	0.000031	0.000008	0.000670
FRDC078	21F Cap Canaille	0.004799	0,837770	0,060788	0.007355	0,002876	0,0000000	0.004676	0.000018	0,000009	0.000631
FRDC076	21E Ile Embiez	0,004799	0,601791	0,060700	0,007355	0,002076	0.000912	0.005208	0.000029	0,000003	0,000571
FRDC07g	22B Toulon gde rade	0,005013	0,601791	0.063495	0.006349	0,003204	0,001010	0.003206	0.000083	0.000011	0.000606
FRDC07g FRDC07h	23D Ile Levant	0.004861	0,453647	0.063495	0.006349	0,003004	0,0000032	0.004664	0.000083	0.0000014	0.000624
FRDC07fi FRDC08d	27B Frejus Est	0.004967	0.629090	0.062909	0.008807	0.002977	0.0000024	0.004736	0,000040	0.000009	0.000624
FRDC08a	29E Antibes 2	0.007167	0.605227	0.060523	0.006234	0,002977	0,000944	0.004656	0.000041	0.000009	0.000634
FRDC09b	29G Port de Nice	0.018660	0,605227	0.065657	0.006566	0.002004	0,000000	0.005051	0.000042	0.000010	0.000588
LVTIC0A0	1250 Hort de Nice	0,010000	0,000020	0,000007	0,000000	0,005107	0,000365	0,000001	0,000028	0,000010	0,000508

		Tributylétain (μg/l)	1,2,4 Trichlorobenzène (µg/I)	Trifluraline (μg/l)	Aldrine (µg/l)	Dieldrine (µg/1)	Endrine (µg/I)	Isodrine (µg/I)	SDDTs (µg/l)
	N° UE - DCE	30	31	33					
	N°CAS	688-73-3	120-82-1	1582-09-8	309-00-2	60-57-1	72-20-8	465-73-6	
	Log Kow	3,54	4,05	5,34	6,5	5,4	5,2	6,5	6,91
	BCF	11400	552	2360	43650	7760	5250	43650	45600
	NQE EC	0,0002	0,4	0,03	0,01	0,01	0,005	0,005	0,025
	NQE ET	0,0002	0,4	0,03	0,01	0,01	0,005	0,005	0,025
	Limite analytique	3,51E-05	0,003623	0,000847	4,58E-06	2,58E-05	3,81E-05	4,58E-06	4,39E-06
	30 % NQE	0,00006	0,12	0,009	0,003	0,003	0,0015	0,0015	0,0075
FRDT02	04B Etg Leucate	0,000064	0,018116	0,000832	0,000004	0,000025	0,000037	0,000004	0,000031
FRDT03	05A Etg La Palme	0,000031	0,018116	0,000748	0,000004	0,000023	0,000034	0,000004	0,000040
FRDT04	06A Etg Bages Sud	0,000162	0,018116	0,000880	0,000005	0,000027	0,000040	0,000005	0,000088
FRDT10	09A Etg Thau sud	0,000041	0,018116	0,000978	0,000005	0,000030	0,000044	0,000005	0,000051
FRDT11b	11B Etg prevost	0,000298	0,018116	0,000935	0,000005	0,000028	0,000097	0,000005	0,000230
FRDT11b	12 I Etg. Mejean ouest	0,000042	0,018116	0,001014	0,000005	0,000031	0,000046	0,000005	0,000099
FRDT11a	12E Etg de l'Or est	0,000033	0,018116	0,000605	0,000003	0,000018	0,000106	0,000003	0,000014
FRDT14d	14A Etg Vaccares	0,000041	0,018116	0,000999	0,000005	0,000030	0,000198	0,000005	0,000018
FRDT15a	17C Etg. Berre sud	0,000050	0,018116	0,000786	0,000004	0,000024	0,000035	0,000004	0,000043
FRDC01	01A03 Banyuls	0,000087	0,018116	0,000873	0,000005	0,000027	0,000039	0,000005	0,000040
FRDC02a	07A Port la nouvelle	0,000044	0,018116	0,001056	0,000006	0,000032	0,000076	800000,0	0,000080
FRDC02c	07G Agde 2	0,000079	0,018116	0,001159	0,000006	0,000035	0,000052	0,000006	0,000061
FRDC03	15A Stes maries	0,000045	0,018116	0,001075	0,000006	0,000033	0,000048	800000,0	0,000072
FRDC03	15B Emb. Rhone	0,000046	0,018116	0,001112	0,000006	0,000034	0,000050	800000,0	0,000118
FRDC04	16B Ponteau	0,000128	0,018116	0,000969	0,000005	0,000029	0,000109	0,000005	0,000053
FRDC05	18A Carry	0,000144	0,018116	0,000939	0,000005	0,000029	0,000042	0,000005	0,000021
FRDC06b	19B Marseille sud	0,000162	0,018116	0,000898	0,000005	0,000027	0,000040	0,000005	0,000017
FRDC07a	20C lle plane	0,000044	0,018116	0,000726	0,000004	0,000022	0,000033	0,000004	0,000033
FRDC076	21F Cap Canaille	0,000110	0,018116	0,000773	0,000004	0,000024	0,000035	0,000004	0,000031
FRDC07e	21E lle Embiez	0,000110	0,018116	0,000861	0,000005	0,000026	0,000039	0.000005	0,000015
FRDC07g	22B Toulon gde rade	0,000835	0,018116	0,000807	0,000004	0,000025	0,000036	0,000004	0,000030
FRDC07h	23D lle Levant	0,000120	0,018116	0,000783	0,000004	0,000024	0,000035	0,000004	0,000016
FRDC08d	27B Frejus Est	0,000253	0,018116	0,000800	0,000004	0,000024	0,000036	0,000004	0,000027
FRDC09a	29E Antibes 2	0,000653	0,018116	0,000769	0,000004	0,000023	0,000035	0,000004	0,000020
FRDC09b	29G Port de Nice	0,000693	0,018116	0,000835	0,000005	0,000025	0,000038	0,000005	0,000033
	Bon état chimique						Eau de t	ransition	
	Mauvais état chimique						Eau côti		
	BCF expérimental sur autre e	spèce mol	lusque						
	BCF calculé (formulelogKow)								
	BCF expérimental sur autre e	spèce inve	rtébré						

7.5. HYDROLOGIE

7.5.1. Définition des paramètres hydrologiques

Température

La température permet l'étude du mélange des masses d'eau et joue un rôle important dans les cycles biologiques qui ont des répercussions sur les écosystèmes.

Salinité

La salinité donne des indications fondamentales sur l'hydrologie des lagunes étudiées car elle permet d'appréhender leur degré de marinisation et de confinement. Comme dans tous les milieux lagunaires, elle est susceptible de varier en fonction des apports d'eau douce issus du bassin versant. Les hauteurs de précipitations permettent d'appréhender les variations annuelles de salinité dans les lagunes.

Oxygène dissous

La concentration en oxygène dissous dans les eaux lagunaires est la résultante des facteurs physiques (température), chimiques (salinité) et biologiques (production par photosynthèse ou respiration). L'effet de la température, et celui de la salinité dans une moindre mesure, masquent les processus issus des phénomènes biologiques. L'équation de Weiss (1970), qui donne la concentration d'oxygène théorique ou "saturation" à partir de la température et de la salinité, permet de calculer le pourcentage d'oxygène dissous par rapport à la saturation (%SatO₂). La saturation ou solubilité est la quantité maximum d'oxygène physiquement dissoute dans l'eau de mer pour une température et une salinité données.

Pourcentage de saturation en Oxygène = (Concentration mesurée/Saturation) x 100

L'oxygène moléculaire dissous est un paramètre important des milieux aquatiques car il gouverne la majorité des processus biologiques des écosystèmes marins. La mesure du pourcentage d'oxygène par rapport à la saturation exprime la résultante des processus biologiques de production et de consommation de l'oxygène. Dans certains écosystèmes, la production in situ par la photosynthèse peut engendrer des sursaturations atteignant 150 voire plus de 200 %. Mais l'accumulation de matière organique peut conduire à la consommation de l'oxygène dissous par les bactéries hétérotrophes et induire des soussaturations voire l'anoxie. Par exemple, dans les lagunes corses où les marées sont faibles, le vent est le principal facteur de refroidissement et de brassage des eaux. Le vent favorise les échanges avec l'atmosphère et peut, lorsqu'il est suffisamment puissant, assurer le retour vers la saturation. Ce retour se fera dans le sens d'un dégazage vers l'atmosphère dans le cas d'une sursaturation et dans le sens d'une diffusion dans l'eau en cas de sous-saturation.

Turbidité

La turbidité exprime la transparence du milieu, c'est à dire la pénétration de la lumière. Elle permet également une approche de la quantité de particules en suspension. Il existe plusieurs définitions de la turbidité. La plus courante fait référence à la lumière diffusée par les particules ou effet Tyndall.

La turbidité donne une mesure de la charge en matières en suspension dans l'eau. Dans les milieux lagunaires, les valeurs de turbidité peuvent augmenter sous l'effet de trois processus :

- la remise en suspension de sédiments sous l'action des vents,
- la production planctonique,
- l'anoxie à l'interface eau-sédiment et/ou dans l'eau qui conduit à la libération importante de matériel détritique.

Les deux derniers processus sont liés aux phénomènes d'eutrophisation.

A la différence de la profondeur Secchi, la turbidité est une mesure de l'eau et ne présente donc pas de dépendance vis à vis de la profondeur. De façon générale les eaux côtières tempérées présentent une turbidité variant de 0,5 à 10 NTU. Dans les lagunes, elle est susceptible d'atteindre des niveaux très supérieurs en raison de la remise en suspension des sédiments sous l'effet des vents violents. La réponse de chaque lagune à ces vents dépend :

- de la profondeur,
- de la nature des sédiments,
- la position géographique de l'écosystème

Nitrates (NO₃)

Dans les sels de l'azote, éléments essentiels dans les processus d'eutrophisation, les nitrates témoignent presque toujours d'apports extérieurs. Le lessivage des engrais des sols vers les eaux souterraines et superficielles, mais aussi les effluents de stations d'épuration (STEP) et de lagunages sont les principales sources de nitrates et nitrites dans les lagunes. La production endogène de nitrates par les bactéries de la nitrification (oxydation de l'ammonium en nitrites puis en nitrates) peuvent conduire à enrichir les eaux lagunaires en nitrates. De fortes concentrations en nitrates sont donc à attendre dans les eaux dessalées.

Nitrites (NO₂)

Les nitrites constituent une forme d'azote inorganique intermédiaire entre la forme la plus oxydée (nitrate) et la forme réduite (ammonium). Dans les apports d'origine agricole, ils sont liés aux nitrates et représentent environ 10 % de la quantité (nitrates + nitrites).

Dans les effluents issus des STEP et lagunages, ils sont plutôt liés à l'ammonium qui constitue le substrat de départ pour la nitrification. Le nitrite est un composé dont l'instabilité biogéochimique empêche l'accumulation dans les milieux naturels.

En l'absence de pollution agricole, de fortes concentrations indiquent donc plutôt des apports récents issus de rejets de STEP et lagunages. Lorsque les concentrations d'ammonium sont fortes (supérieures à $10~\mu\text{M}$), les bactéries nitrifiantes en transforment une partie en nitrites.

Azote ammoniacal ou ammonium (NH₄⁺)

L'ammonium est considéré comme la plaque tournante du cycle de l'azote dans les écosystèmes côtiers. Ses concentrations dans les eaux marines sont souvent inférieures à 0.01 mg l⁻¹ voire indétectables. Il est donc impératif de doser l'ammonium dans une gamme de concentrations basses (0,1 à 10 µM) et à l'abri de toute pollution, qu'elle vienne de l'eau ou de l'air.

L'azote ammoniacal ou ammonium est une source d'azote minérale essentielle dans le fonctionnement biologique des écosystèmes aquatiques. Utilisé comme source d'azote par le phytoplancton et les macrophytes, l'ammonium est très impliqué dans les processus d'eutrophisation. Il est présent dans les engrais azotés mais est peu lessivable par les pluies en comparaison avec les nitrates. L'ammonium constitue surtout un traceur de rejets de STEP et de lagunages. De plus, c'est le produit de la régénération azotée qui permet aux apports du bassin versant de subir plusieurs cycles « consommation-régénération » selon le taux de résidence des eaux lagunaires. Il provient des excrétions animales et de la décomposition bactérienne de la matière organique azoté dans l'eau, et notamment à l'interface eau-sédiment. Lors de crises anoxiques, l'ammonium présente des pics de concentration.

Azote inorganique dissous (NID)

En additionnant les concentrations en azote ammoniacal, nitrates et nitrites, on obtient la quantité totale en sels d'azote disponible à la production primaire. Cette quantité, appelée Azote Inorganique Dissous ou NID, s'exprime en micromole par litre (µM).

$$[NID] = [NH_4^+] + [NO_2^-] + [NO_3^-]$$

Phosphates (PO₄³-)

Le phosphore constitue le deuxième élément impliqué dans les processus d'eutrophisation. Les végétaux ont besoin d'orthophosphates dissous (PO₄³⁻) pour assurer leur croissance. Les cours d'eau et les eaux souterraines qui alimentent les eaux côtières sont généralement déficitaires en phosphates par rapport à l'azote inorganique dissous. Les principaux apports de phosphore sont associés à la phase particulaire qui provient essentiellement du lessivage superficiel ou ruissellement à l'occasion de fortes pluies. Les phosphates ont tendance à s'accumuler dans les sédiments avec lesquelles ils s'associent dans des formes majoritairement minérales et particulaires. Les sédiments peuvent re-larguer des quantités importantes de phosphates dans l'eau lorsque des conditions réductrices s'installent et/ou se développent (disparition de l'oxygène dissous et baisse du pH), c'est à dire en période estivale lorsque la température de l'eau et donc du sédiment augmente (voire oxygène dissous). C'est pourquoi les concentrations de phosphate dans la colonne d'eau sont très liées à la température lorsqu'elles ne sont pas soumises à la pression des végétaux ou lorsque des effluents des STEP et lagunages ne viennent pas perturber ce cycle naturel.

Azote total (NTE)

Les concentrations en azote total (NTE) dans l'eau renseignent aussi bien sur les niveaux de concentrations en sels d'azote (NID) que sur les quantités de matières organiques particulaires ou dissoutes dont certaines formes sont clairement identifiées comme d'autres causes de l'eutrophisation.

Le lessivage des terrains, sous l'effet brutal et sporadique des précipitations, entraîne dans les lagunes réceptacles des composés organiques (urée, protéines, détritus organiques de toutes natures) qui, tout en se reminéralisant, consomment de l'oxygène et libèrent du NID essentiellement sous forme ammoniacale.

Phosphore total (PTE)

Comme pour l'azote total dans l'eau (NTE), les concentrations en phosphore total dans l'eau (PTE) expriment à la fois les niveaux de phosphates et les quantités de matières organiques qui révèlent notamment les excès de production primaire. Le phosphore apporté aux lagunes par le lessivage du bassin versant est en grande partie sous forme particulaire mais une augmentation des concentrations en phosphates dans les eaux accompagne souvent les dessalures consécutives à de fortes pluies sur le bassin versant. Les anoxies qui entraînent la mortalité de nombreux organismes aérobie vivant à l'interface eau-sédiment, induisent la libération d'importantes quantités de phosphates dans l'eau (SOUCHU et al., 1998).

Chlorophylle

La détermination des chlorophylles a, b et c permet une première approche de la composition des peuplements phytoplanctoniques suivant les grands groupes taxonomiques

Parmi les pigments chlorophylliens, seule la chlorophylle-a est retrouvée dans toutes les espèces phytoplanctoniques. Ce paramètre est un bon indicateur de la quantité de phytoplancton présent dans les eaux lagunaires. La prolifération du phytoplancton est une des principales conséquences d'apports excessifs en sels d'azote et de phosphore dans les milieux aquatiques. L'augmentation de la turbidité dans les lagunes entraîne la disparition des phanérogames marines au profit des algues opportunistes.

7.5.2. Percentile 10

Le calcul du percentile 10 est le suivant :

 P_{10} : valeur de l'indicateur $x_1, x_2, ... x_n$: valeurs des ordonnées de la variable n: nombre de valeurs pour la variable p = 0,1 np = j+g

Avec j la partie entière et g la partie fractionnaire de np

$$P_{10} = (1-g) x_i + g x_{i+1}$$

7.5.3. Oxygène dissous – Eaux côtières

Tableau 60 : Résultats du Percentile 10 des mesures d'Oxygène dissous des masses d'eaucôtières (fonction de leur typologie)

Oxygène	e dissous, percentile 10, mg.l-1	1																		
eaux côtic	ères type 2A, juin-septembre, lii	mites	s = 5	3	2 1															
					tous les p						tous les p						oint DCE se			
ME	nom ME	typo			tous les ré			_			un résultat p		-				ın résultat p	_	_	
IWIE .	NOTE WILL	iypo	surf	fond	surf	fond			_	fond	surf	fond	-		surf		surf	_	_	
			nb	mes	métriq	ue	cla	sse	nbı	mes	métriq	ue	cla	isse	nb	nes	métriq	ue	cla	asse
FRDC02a	Racou Plage - Embouchure de l'Aude	C19	5		8,266765		1		3		8,446819				3		8,446819		- 1	
FRDC02c	Cap d´Agde	C19	11		9,357092		1		5		9,509995									
FRDC02e	De Sète à Frontignan	C19	2		7,808056		1		1		7,4308									
eaux côtio	ères type 1 , juin-septembre, lim	ites :			tous les p tous les ré	sultats	_				tous les p un résultat p	ar mo					oint DCE se ın résultat p	ar moi	is	_
		1,75	_	fond	surf	fond			_	fond	surf	fond	-		surf		surf		_	
				mes	métriq	ue	cla	sse		mes	métriq	ue	cla	isse		nes	métriq	ue	cla	isse
FRDC03	Estuaire du Rhône	T11	6		210,2345		1		4		208,9198				4		208,9198		1	
FRDC04	Golfe de Fos	C20	46	42	11,02045	10,1	1	1	44	42	10,79181	10,1	1	1	16	14	78,27205	9,43	1	1
eaux côtic	ères type 3W , juin-septembre, li	imite	s = :	5 3	2 1															
					tous les p						tous les p						oint DCE se			
ME	nom ME	typo			tous les ré				<u> </u>		un résultat p	_			<u> </u>		ın résultat p	_		
IWIE .	NOTE WILL	iypo	_	fond	surf	fond		_		fond	surf	fond				fond	surf	fond		fond
			nb	mes	métriq	ue	cla	sse	nbı	mes	métriq	ue	cla	isse		nes	métriq	ue	cla	isse
FRDC01		C18	1 1		7.35935		1		1 1	1	7.35935	1	1		l 1		7.35935		1	4
FRDC07a	Frontière espagnole - Racou Plage Cap Cepet - Cap de Carqueiranne	C22	5	_	209.9916				3		201.2461						177.6247			_

7.5.4. Hydrologie - Eaux de transition

Tableau 61 : Résultats paramètres hydrologiques Etang de LEUCATE

	Leucate Nord										L	euca	te Sı	ıd			Leucate Dindilles							
	1999	2000*	2001	2002	2003	2004	2005	2006	1999	2000*	2001	2002	2003	2004	2005	2006	1999	2000*	2001	2002	2003	2004	2005	2006
Oxygène dissous (écart saturation)																								
Turbidité																								
Phosphates																								
Azote inorganique dissous																								
Nitrites																								
Nitrates																								
Ammonium																								
Chlorophylle a																								
Chlorophylle a + phéopigments																								
Azote total																								
Phosphore total																								
ETAT COLONNE D'EAU																								
Picophytoplancton (< 3 μm)																								
Nanophytoplancton (> 3 µm)								Ī																
ETAT PHYTOPLANCTON																								

Tableau 62 : Résultats paramètres hydrologiques de Etang de LA PALME

				La	Pal	me			
	1998 (1)	1999	$2000^{(2)}$	2001	2002	2003	2004	2005	2006
Oxygène dissous (écart saturation)									
Turbidité									
Phosphates									
Azote inorganique dissous									
Nitrites									
Nitrates									
Ammonium									
Chlorophylle a									
Chlorophylle a + phéopigments									
Azote total									
Phosphore total									
ETAT COLONNE D'EAU									
Picophytoplancton (<3 μm) Nanophytoplancton (> 3 μm)									
ETAT PHYTOPLANCTON									

Tableau 63 : Evolution pluriannuelle des diagnostics de l'eau et du phytoplancton dans les trois stations de l'étang de BAGES-SIGEAN (RSL, 2006)

					Bag	es l	Nord				
	1996	*1997*	1998	1999	*0002	2001	2002	2003	2004	2005	2006
Oxy gène dissous (écart saturation)											
Turbidité											
Phosphates											
Azote inorganique dissous											
Nitrites											
Nitrates											
Ammonium											
Chlorophy lle a											
Chlorophy lle a + phéopigments											
Azote total				ᆜ			\sqsubseteq			Щ	
Phosphore total											
ETAT COLONNE D'EAU											
Picophytoplancton (< 3 μm)											
Nanophytoplancton (> 3 μm)											
ETAT PHYTOPLANCTON											

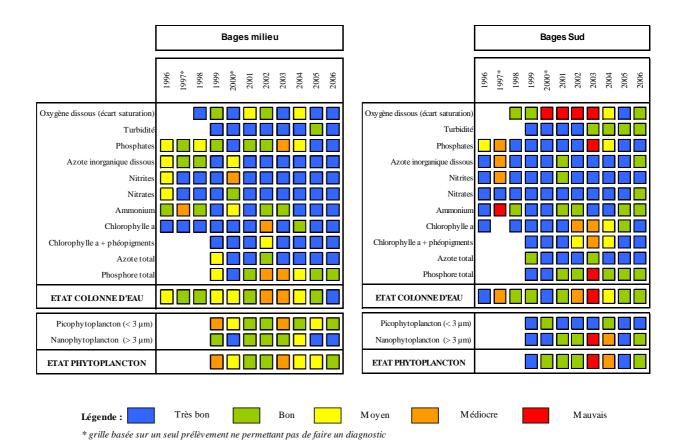
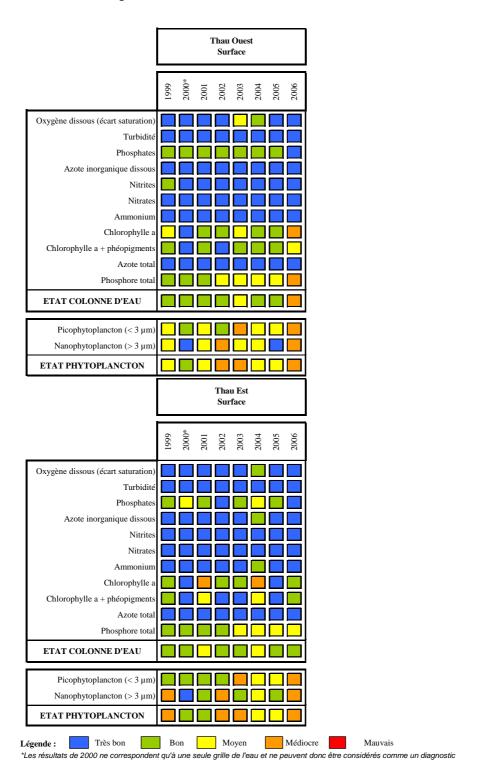



Tableau 64 : Evolution pluriannuelle des diagnostics de l'eau et du phytoplancton dans les stations de l'étang de THAU (RSL, 2006)

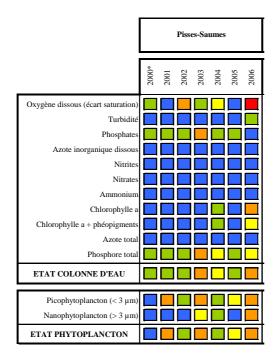


Tableau 65 : Résultats paramètres hydrologiques de Etang de GRAND BAGNAS

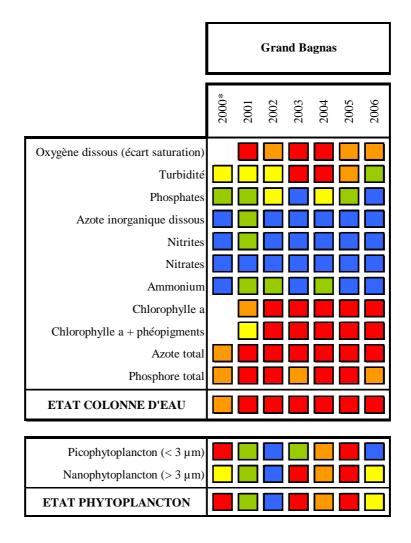


Tableau 66 : Résultats paramètres hydrologiques des étangs PALAVASIENS

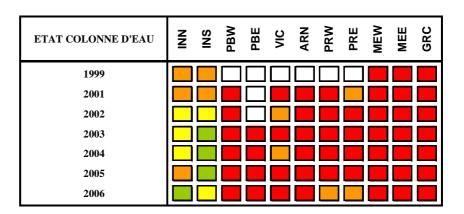


Tableau 67 : Grilles estivales de lecture de l'eau pour l'étang du PREVOST (Ouest) lors de la campagne 2006.

PRW			Très bon		Bon		Moyen		Médiocre		Mauvais
[Δ % O ₂ SAT]		0		20		30	31	40		50	
TUR	(NTU)	0		5	8,9	10		25		40	
PO ₄ 3.	(µM)	0		0,3	0,50	1		1,5		4	
NID	(µM)	0	0,8	2		6		10		20	
NITRI	(µM)	0	0,07	0,3		0,5		0,75		1	
NITRA	(µM)	0	0,08	1		3		5		10	
AMMO	(µM)	0	0,69	1		3		5		10	
Chl-a	(µg/l)	0		5		7		10	11	20	
Chlaphe	(µg/l)	0		7		10	12	15		25	
NT	(µM)	0	50	50		75		100		120	
PT	(µM)	0		0,75		1,5		2,5	2,93	4,5	

Tableau 68 : Grilles estivales de lecture de l'eau pour l'étang du MEJEAN (Ouest) lors de la campagne 2006.

MEW	,		Très bon		Bon		Moyen		Médiocre		Mauvais
[Δ % O ₂ SAT]		0		20		30		40		50	103
TUR	(NTU)	0		5		10		25		40	42
PO ₄ ³⁻	(µM)	0		0,3		1	1,1	1,5		4	
NID	(µM)	0	1,9	2		6		10		20	
NITRI	(μΜ)	0	0,11	0,3		0,5		0,75		1	
NITRA	(µM)	0	0,20	1		3		5		10	
AMMO	(µM)	0		1	1,7	3		5		10	
Chl-a	(µg/l)	0		5		7		10		20	136
Chlaphe	(µg/l)	0		7		10		15		25	148
NT	(µM)	0		50		75		100		120	305
PT	(µM)	0		0,75		1,5		2,5		4,5	22,90

Tableau 69 : Résultats paramètres hydrologiques de l'étang OR

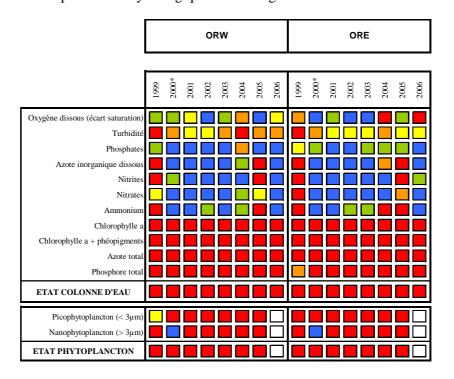


Tableau 70 : Résultats paramètres hydrologiques de l'étang de BERRE (BES en surface et BEF au fond)

été 2006

BES			Très bon		Bon		Moyen		Médiocre		Mauvais
[Δ % O ₂ SAT]		0		20		30		40	47	50	
TUR	(NTU)	0	2,7	5		10		25		40	
PO ₄ 3-	(μΜ)	0	0,07	0,3		1		1,5		4	
NID	(μΜ)	0	0,5	2		6		10		20	
NITRI	(μΜ)	0	0,07	0,3		0,5		0,75		1	
NITRA	(μΜ)	0	0,10	1		3		5		10	
AMMO	(μΜ)	0	0,35	1		3		5		10	
Chl-a	(µg/l)	0		5		7		10	16	20	
Chlaphe	(µg/l)	0		7		10		15	19	25	
NT	(μΜ)	0		50	61	75		100		120	
PT	(μΜ)	0		0,75		1,5	1,98	2,5		4,5	

été 2006

BEF			Très bon		Bon		Moyen		Médiocre		Mauvais
[Δ % O ₂ SAT]		0		20		30		40		50	99
TUR	(NTU)	0		5		10	15	25		40	
PO ₄ ³⁻	(µM)	0		0,3		1		1,5	2,3	4	
NID	(µM)	0		2		6		10		20	35
NITRI	(µM)	0	0,13	0,3		0,5		0,75		1	
NITRA	(µM)	0	0,37	1		3		5		10	
AMMO	(µM)	0		1		3		5		10	35
Chl-a	(µg/l)	0		5		7		10	12	20	
Chlaphe	(µg/l)	0		7		10		15	20	25	
NT	(µM)	0	42	50		75		100		120	
PT	(μΜ)	0		0,75		1,5		2,5	3,70	4,5	-

Tableau 71 : Résultats paramètres hydrologiques de l'étang de VACCARES (VCS en surface)

été 2006

VCS			Très bon		Bon		Moyen		Médiocre		Mauvais
[Δ % O ₂ SAT]		0	15	20		30		40		50	
TUR	(NTU)	0	4,1	5		10		25		40	
PO ₄ ³⁻	(μΜ)	0	0,09	0,3		1		1,5		4	
NID	(μΜ)	0		2	2,7	6		10		20	
NITRI	(μΜ)	0	0,15	0,3		0,5		0,75		1	
NITRA	(μΜ)	0	0,45	1		3		5		10	
AMMO	(μΜ)	0		1	2,1	3		5		10	
Chl-a	(µg/l)	0		5		7		10	11	20	
Chlaphe	(µg/l)	0		7		10	12	15		25	·
NT	(μΜ)	0		50		75	92	100		120	·
PT	(μΜ)	0		0,75		1,5	1,81	2,5		4,5	

7.6. PHYTOPLANCTON

7.6.1. Biomasse

Formule de calcul du Percentile 90 (P90) :

P₉₀ : valeur de l'indicateur

x₁, x₂, ... x_n : valeurs des ordonnées de la variable

n : nombre de valeurs pour la variable

p = 0.9np = j + g

Avec j la partie entière et g la partie fractionnaire de np

 $P_{90} = (1-g) x_j + g x_{j+1}$

Tableau 72 : Résultats du Percentile 90 des mesures de Chlorophylle-a des masses d'eau côtières, en fonction de leur typologie (Belin, 2007)

Chlorophylle, percentile 90, µg.I-1

eaux côtières **type 1**, toute l'année, limites = 5 10 20 40

				tous les rés			us les points sultat par mo	is		DCE seulement ésultat par mois	
ME	nom ME	typo	nbmes	métrique	classe	nbmes	métrique	classe	nbmes	métrique	classe
FRDC03	Estuaire du Rhône	T11	25	3,29		23	3,386		23	3,386	1
FRDC04	Golfe de Fos	C20	377	2,869		175	2,855		92	1,788	1

eaux côtières **type 2A**, toute l'année, limites = 2.4 - 3.6 - 7.2 - 14.4 ou 2.4 - 3.6 - 5.4 - 10.8

Cuux cot	ioroo ijpo = i, touto rumnoo, immeo =		0.0	/ · Z	1 Ou 2.1	0.0 0.1 1	0.0							
					us les points				s les points				DCE seulement	
				tou	s les résultats			un rés	sultat par mois			un ré	sultat par mois	
ME	nom ME	typo	nbmes	mes métrique classe				métrique	cla	sse	nbmes	métrique	cla	sse
					2.4-3.6-7.2-14.4	2.4-3.6-7.2-14.4 2.4-3.6-5.4-10.8			2.4-3.6-7.2-14.4	2.4-3.6-5.4-10.8			2.4-3.6-7.2-14.4	2.4-3.6-5.4-10.8
FRDC02a	Racou Plage - Embouchure de l'Aude	C19	121	2,267			65	2,1285			65	2,1285		
FRDC02c	Cap d'Agde	C19	28	2,008			11	1,9128						
FRDC02e	De Sète à Frontignan	C19	120	3	2	2	64	2,854	2	2				
FRDC05	Côte Bleue	C21	5	1,385	385 1		5	1,385						

eaux côtières type 3W, toute l'année, limites = 1.1 - 1.8 - 3.6 - 7.2 ou 1.1 - 1.8 - 2.7 - 5.4

					us les points s les résultats				s les points sultat par mois				DCE seulement sultat par mois	
ME	nom ME	typo	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse
					1.1-1.8-3.6-7.2	1.1-1.8-3.6-7.2 1.1-1.8-2.7-5.4			1.1-1.8-3.6-7.2	1.1-1.8-2.7-5.4			1.1-1.8-3.6-7.2	1.1-1.8-2.7-5.4
FRDC01	Frontière espagnole - Racou Plage	C18	2	2,102	3	3	2	2,102	3	3	2	2,102	3	3
FRDC06b	Pointe d'Endoume - Cap Croisette et îles du Frioul	C20	10	0			10	0			10	0		1
FRDC07b	Cap croisette - Bec de l'Aigle	C22	12	0,572			9	0,645			9	0,645		1
FRDC07e	Ilot Pierreplane - Pointe du Gaou	C22	12	0,348			11	0,374			11	0,374		1
FRDC07g	Cap Cepet - Cap de Carqueiranne	C22	183	0,935			91	0,787			18	0,578		1
FRDC07h	Iles du Soleil	C22	8	0,182			8	0,182			8	0,182		1
FRDC08d	Ouest Fréjus - Pointe de la Galère	C24	11	0,35			11	0,35			11	0,35		1

7.6.2. Abondance

Abondance des eaux côtières

Tableau 73 : abondance phytoplanctonique eaux côtières

Abondance, % d'échantillons avec bloom (>100 000 grandes cellules, > 250 000 petites cellules) Méditerranée, eaux côtières type 1, toute l'année, limites = 20 40 70 90

				tous les po tous les rési			tous les po un résultat pa			oint DCE seu ın résultat pa	
ME	nom ME	typo	nbmes	métrique	classe	nbmes	métrique	classe	nbmes	métrique	classe
FRDC03	Estuaire du Rhône	T11	88	27.27273	2	36	27.77778	2	36	27.77778	2
FRDC04	Golfe de Fos	C20	149	31.54362	2	74	32.43243	2	59	35.59322	2

Méditerranée, eaux côtières type 2A, toute l'année, limites = 20 40 70 90

				tous les po tous les rés			tous les po un résultat pa			oint DCE seu un résultat pa	
ME	nom ME	typo	nbmes	métrique	classe	nbmes	métrique	classe	nbmes	métrique	classe
FRDC02a	Racou Plage - Embouchure de l'Aude	C19	162	33.33333	2	85	31.76471	2	85	31.76471	2
FRDC02c	Cap d'Agde	C19	32	37.5	2	12	25	2			
FRDC02e	De Sète à Frontignan	C19	154	50	3	73	56.16438	3			
FRDC02f	Frontignan - Pointe de l'Espiguette	C19	45	31.11111	2	16	43.75	3			
FRDC05	Côte Bleue	C21	- 5	0	1	5	0	1			

Méditerranée, eaux côtières type 3W, toute l'année, limites = 20 40 70 90

				tous les points tous les résultats			tous les po un résultat pa			oint DCE seu un résultat pa	
	nom ME	typo	nbmes	métrique	classe	nbmes	métrique	classe	nbmes	métrique	classe
FRDC01	Frontière espagnole - Racou Plage	C18	9	44.44444	3	7	28.57143	2	7	28.57143	2
FRDC06b	Pointe d'Endoume - Cap Croisette et îles du Frioul	C20	10	0	1	10	0	1	10	0	1
FRDC07b	Cap croisette - Bec de l'Aigle	C22	11	0	1	9	0	1	9	0	1
FRDC07e	llot Pierreplane - Pointe du Gaou	C22	11	0	1	10	0	1	10	0	1
FRDC07g	Cap Cepet - Cap de Carqueiranne	C22	186	30.10753	2	91	27.47253	2	17	17.64706	1
FRDC07h	lles du Soleil	C22	5	0	1	5	0	1	- 5	0	1
FRDC08d	Ouest Fréjus - Pointe de la Galère	C24	- 11	0	1	11	0	1	11	0	1
FRDC09c	Port de commerce de Nice - Cap Ferrat	C25	116	1.724138	1	69	2.898551	1	69	2.898551	1

* Abondance des eaux de transition (Cytométrie en flux)

Tableau 74 : P90 des données d'abondance phytoplanctonique (nano- et picophytoplancton) pour plusieurs années consécutives et pour plusieurs combinaisons de deux années, interprétées avec la grille DCE. Remarques : une seule donnée en 2000 sur l'ensemble des stations ; * pas de données en 2000 pour les stations LEN et LES. (Derolez, 2007)

Lagune (code	. 1				P90					P90	
masse d'eau DCE)	station RSL & RLC	années consécutives	nb de données	Nano	Pico	Max (Pico,Nano)	un an sur trois	nb de données	Nano	Pico	Max (Pico,Nano)
		2001 à 2006	18	4	20		1999 et 2002	6	2	21	
	LEN						2001 et 2004	6	3	17	
							2002 et 2005	6	2	21	
LEUCATE							2003 et 2006	6	5	15	
(FRDT02)		2001 à 2006	18	13	12		1999 et 2002	6	6	13	
	LES						2001 et 2004	6	3	10	
							2002 et 2005	6	13	115	
							2003 et 2006	6	14	6	
		2000 à 2005	16	2	16		2000 et 2003	4	4	5	
LA PALME	LAP	2001 à 2006	17	3	26		2001 et 2004	6	2	20	
(FRDT03)	LAI						2002 et 2005	6	2	16	
							2003 et 2006	5	3	17	
		1999 à 2004	16	6	21		1999 et 2002	6	2	11	
		2000 à 2005	16	6	20		2000 et 2003	4	36	22	
	BGS	2001 à 2006	18	5	14		2001 et 2004	6	5	21	
							2002 et 2005	6	2	9	
							2003 et 2006	6	25	13	
		1999 à 2004	16	5	87		1999 et 2002	6	3	76	
		2000 à 2005	16	5	65		2000 et 2003	4	3	148	
BAGES (FRDT04)	BGM	2001 à 2006	18	5	54		2001 et 2004	6	7	31	
(FRD104)							2002 et 2005	6	2	56	
							2003 et 2006	6	3	106	
		1999 à 2004	16	17	190		1999 et 2002	6	14	113	
		2000 à 2005	16	10	89		2000 et 2003	4	11	129	
	BGN	2001 à 2006	18	9	58		2001 et 2004	6	6	76	
	· ·						2003 et 2006	6	9	91	
							2003 et 2006	6	9	91	
		2000 à 2005	16	137	761		2000 et 2003	4	49	333	
BAGNAS		2001 à 2006	18	105	460		2001 et 2004	6	18	134	
(FRDT09)	BAN						2002 et 2005	6	269	1267	
							2003 et 2006	6	34	23	
		1999 à 2004	14	9	72		1999 et 2002	4	5	62	
		2000 à 2005	16	9	63		2000 et 2003	4	11	86	
	TEF	2001 à 2006	18	12	143		2001 et 2004	6	5	27	
		2001.22000	- 10		1.15		2002 et 2005	6	5	60	
							2003 et 2006	6	17	1103	
		1999 à 2004	16	8	127		1999 et 2002	6	7	87	
		2000 à 2005	16	5	127		2000 et 2003	4	9	236	
	TES	2001 à 2006	18	5	219		2001 et 2004	6	4	51	
		2001 2 2000	- 10		0.17		2002 et 2005	6	3	100	
							2003 et 2006	6	13	234	
		2001 à 2006	17	13	134		2001 et 2004	5	4	119	
THAU (FRDT10)	TPE	2001 4 2000	- 17	12	151		2002 et 2005	6	14	51	
(1.071.0)	'' -						2002 et 2005 2003 et 2006	6	31	168	
		1999 à 2004	14	14	122		1999 et 2002	4	3	76	
		2000 à 2005	16	11	107		2000 et 2003	4	21	353	
	TWF	2000 à 2005 2001 à 2006	18	8	168		2000 et 2003 2001 et 2004	6	4	102	
	1 4 41	2001 a 2000	10	0	100		2001 et 2004 2002 et 2005	6	3	64	
							2002 et 2003 2003 et 2006	6	25	357	
		1000 2 2004	1.4	0	99						
		1999 à 2004	14	8	88		1999 et 2002	4	3	69	
	TO TO	2000 à 2005	16	8	83		2000 et 2003	4	13	121	
	TWS	2001 à 2006	18	8	109		2001 et 2004	6	4	63	
							2002 et 2005	6	2	72	
							2003 et 2006	6	19	206	

Max	Lagune (code	_	_			P90				P90	
ARN 2001 à 2006 18 262 2193 2002 et 2005 6 814 1519 2000 à 2005 16 119 348 2000 et 2003 4 148 218 2001 à 2006 18 217 344 2001 et 2004 6 287 506 2002 et 2005 6 27 246 2003 à 2005 6 229 210 2001 à 2006 15 73 660 2001 et 2004 5 43 431 PRW 2001 à 2006 15 73 660 2001 et 2004 5 43 431 PRW 2001 à 2006 15 73 660 2001 et 2004 5 102 163 EST (FRDT1116) MEE 2000 à 2005 16 607 2673 2000 et 2003 4 2006 6 102 163 2001 à 2006 18 867 2468 2001 et 2004 6 40 2673 2002 et 2005 6 62 2984 2002 et 2005 6 62 2984 2002 et 2005 6 62 2984 MEW 2003 à 2006 18 2047 7603 2000 et 2003 4 630 2539 MEW 2001 à 2006 18 2247 7603 2001 et 2004 6 3191 1437 2000 à 2005 16 593 6730 2000 et 2003 4 630 2539 MEW 2001 à 2006 18 2247 7603 2001 et 2004 6 351 5792 2002 et 2005 6 72 8120 2003 et 2006 6 72 8120 2003 et 2006 6 72 8120 2003 et 2006 6 9547 5294 1999 à 2004 16 176 5573 1999 et 2002 6 231 5481 2000 à 2005 16 708 4511 2001 et 2004 6 62 5573 2002 et 2005 6 62 4881 2001 à 2006 18 241 4511 2001 et 2004 6 62 5573 2002 et 2005 6 62 4881 2001 à 2006 18 1319 7131 2001 et 2004 6 62 5573 2002 et 2005 6 788 11274 (FRDT114) OR (FRDT115) OR (FRDT114) OR (FRDT114) OR (FRDT114) OR (FRDT115) OR (FRDT114) OR (FRDT114) OR (FRDT115) OR (FRDT116) OR (FRDT116) OR (FRDT117) OR (FRDT117) OR (FRDT118) OR (FRDT118) OR (FRDT118) OR (FRDT118) OR (FRDT118) OR (FRDT119) OR (FRDT119) OR (FRDT119) OR (FRDT1110) OR (FRDT1110)	masse d'eau	station RSL & RLC	années consécutives	nb de données	Nano	Pico	 un an sur trois	nb de données	Nano	Pico	
PALAVASIENS EST (PRDTIII) MEW 2000 à 2005 16 119 348 2000 et 2003 4 148 218 218 2001 et 2004 6 229 210 2001 à 2006 15 73 660 2003 et 2006 6 229 210 2003 et 2006 6 102 163 2003 et 2006 6 2003 et 2006 2003 et 2006 6 2003 et 2006 2003 et 2006 6 200			2000 à 2005	16	235	2715	2001 et 2004	6	43	11298	
PRE		ARN	2001 à 2006	18	262	2193	2002 et 2005	6	814	1519	
PRE							2003 et 2006	6	258	174	
PRE 2001 à 2006 15 73 660 2001 et 2004 5 43 431			2000 à 2005	16	119	348	2000 et 2003	4	148	218	
PALAVASIENS EST (FRDT111b) PALAVASIENS CRED 111b) PALAVASIENS CRED 115 733 6600 COURT 2001 à 2006 18 867 2468 COURT 2000 et 2003 4 2 2008 768 COURT 2000 à 2005 16 593 6730 COURT 2000 et 2005 6 6 62 2984 COURT 2000 et 2005 6 6 62 2984 COURT 2000 et 2005 6 72 8120 COURT 2000 è 2005 16 72 8120 COURT 2000 è 2005 6 226 3481 COURT 2000 è 2005 6 96 5187 COURT 2000 è 2005 6 96 5187 COURT 2000 è 2005 6 96 5187 COURT 2000 è 2005 6 143 3351 COURT 2000 è 2005 6 143 3351 COURT 2000 è 2005 6 143 3351 COURT 2000 è 2006 6 140 2006 140 2006 140 2006 140 2006 140 2006 140 2006 140 2006 140 2006 140 2006 140 2		DDE	2001 à 2006	18	217	344	2001 et 2004	6	287	506	
PALAVASIENS EST (FRDTIII) MEE 2001 à 2006 15 73 660 2001 et 2004 5 43 431		FKE					2002 et 2005	6	27	246	
PRW							2003 et 2006	6	229	210	
PALAVASIENS EST (FRDTIIb) MEE 2000 à 2005 16 607 2673 2000 et 2003 4 2008 768			2001 à 2006	15	73	660	2001 et 2004	5	43	431	
## PALAVASIENS EST (FRDT11b) MEE MEE		PRW					2002 et 2005	6	23	780	
MEE MEE 2001 à 2006 18 867 2468 2001 et 2004 6 40 2673							2003 et 2006	6	102	163	
(FRDT116) MEW 2000 à 2005 16 593 6730 2000 et 2003 4 630 2539	PALAVASIENS		2000 à 2005	16	607	2673	2000 et 2003	4	2008	768	
MEW			2001 à 2006	18	867	2468	2001 et 2004	6	40	2673	
MEW 2000 à 2005 16 593 6730 2000 et 2003 4 630 2539	(FRDT11b)	INICC					2002 et 2005	6	62	2984	
MEW 2001 à 2006 18 2247 7603 2001 et 2004 6 351 5792							2003 et 2006	6	3191	1437	
MEVV 2002 et 2005 6 72 8120 2003 et 2006 6 9547 5294 2003 et 2006 6 9547 5294 2000 et 2003 4 186 1403 2000 et 2005 6 226 3481 2000 et 2005 6 226 3481 2000 et 2005 6 226 3481 2003 et 2006 6 280 1999 2002 et 2005 6 226 3481 2003 et 2006 6 280 1999 2000 et 2003 4 4884 5226 2000 et 2003 4 4884 5226 2000 et 2003 4 4884 5226 2001 et 2004 6 366 2430 2002 et 2005 6 96 5187 2002 et 2005 6 96 5187 2003 et 2006 6 7888 11274 2001 et 2004 6 2003 et 2006 6 2003 et 2006 6 2003 et 2006 2			2000 à 2005	16	593	6730	2000 et 2003	4	630	2539	
2002 et 2005 6 72 8120		NATS OF	2001 à 2006	18	2247	7603	2001 et 2004	6	351	5792	
GRC 1999 à 2004 16 176 5573 1999 et 2002 6 231 5481 2000 à 2005 16 176 4618 2000 et 2003 4 186 1403 1403 1405 1		INIEVV					2002 et 2005	6	72	8120	
GRC 1999 à 2004 16 176 5573 1999 et 2002 6 231 5481 2000 à 2005 16 176 4618 2000 et 2003 4 186 1403 1403 1405 1							2003 et 2006	6	9547	5294	
GRC 2001 à 2006 18 241 4511 2001 et 2004 6 62 5573 2002 et 2005 6 226 3481 2003 et 2006 6 280 1999 2003 et 2006 6 280 1999 2000 à 2005 16 703 5167 2000 et 2003 4 4884 5226 2001 à 2006 18 1319 7131 2001 et 2004 6 366 2430 2002 et 2005 6 96 5187 2002 et 2005 6 96 5187 2003 et 2006 6 7888 11274 2003 et 2006 à 2005 16 2701 445 2000 et 2003 4 3916 2758 2000 à 2005 16 2701 445 2000 et 2003 4 3916 2758 2000 à 2006 18 833 2928 2001 et 2004 6 109 2442 2002 et 2005 6 96 143 3351 2003 et 2006 6 143 3351 2003 et 2006 6 1937 2876 2003 et 2006 2003 et 2006 et 2003 et 2006 e			1999 à 2004	16	176	5573	1999 et 2002	6	231	5481	
ORE (FRDT11a) ORE (FRDT11a) ORE (FRDT11a) ORW ORW ORW ORW ORW ORW ORW OR			2000 à 2005	16	176	4618	2000 et 2003	4	186	1403	
ORE ORE (FRDT11a) ORE 1999 à 2004 16 703 4500 1999 et 2002 6 28 2332 ORE 2000 à 2005 16 703 5167 2000 et 2003 4 4884 5226 2001 à 2006 18 1319 7131 2001 et 2004 6 366 2430 2002 et 2005 6 96 5187 2003 et 2006 6 7888 11274 1999 à 2004 16 443 2701 1999 et 2002 6 65 2054 2000 à 2005 16 2701 445 2000 et 2003 4 3916 2758 ORW 2001 à 2006 18 833 2928 2001 et 2004 6 109 2442 VACCARES VCS 2006 3 5 68 BEFRE BEF 2006 3 12 574		GRC	2001 à 2006	18	241	4511	2001 et 2004	6	62	5573	
ORE ORE ORE DISTRICT ORE DISTRICT ORE DISTRICT ORE DISTRICT OR (FRDT11a) OR (FRDT11a) OR (FRDT11a) OR (FRDT11a) OR							2002 et 2005	6	226	3481	
ORE 2000 à 2005 16 703 5167 2000 et 2003 4 4884 5226 2001 à 2006 18 1319 7131 2001 et 2004 6 366 2430 2002 et 2005 6 96 5187 2003 et 2006 6 7888 11274 7131							2003 et 2006	6	280	1999	
ORE 2001 à 2006 18 1319 7131 2001 et 2004 6 366 2430 OR (FRDT11a) OR (1999 à 2004	16	703	4500	1999 et 2002	6	28	2332	
ORE 2001 à 2006 18 1319 7131 2001 et 2004 6 366 2430 OR (FRDT11a) OR (2000 à 2005	16	703	5167	2000 et 2003	4	4884	5226	
OR (FRDT11a) 1999 à 2004 16 443 2701 1999 et 2002 6 65 2054 2000 à 2005 16 2701 445 2000 et 2003 4 3916 2758 ORW 2001 à 2006 18 833 2928 2001 et 2004 6 109 2442 2002 et 2005 6 143 3351 2003 et 2006 6 1937 2876 VACCARES VCS 2006 3 5 68 BEF 2006 3 12 574		ORE	2001 à 2006	18	1319		2001 et 2004	6	366	2430	
(FRDT11a) 1999 à 2004 16 443 2701 1999 et 2002 6 65 2054 ORW 2000 à 2005 16 2701 445 2000 et 2003 4 3916 2758 2001 à 2006 18 833 2928 2001 et 2004 6 109 2442 2002 et 2005 6 143 3351 2003 et 2006 6 1937 2876 VACCARES VCS 2006 3 5 68 BEFRE BEF 2006 3 12 574							2002 et 2005	6	96	5187	
ORW 2000 à 2005 16 2701 445 2000 et 2003 4 3916 2758 2001 à 2006 18 833 2928 2001 et 2004 6 109 2442 2002 et 2005 6 143 3351 2003 et 2006 6 1937 2876 2003 et 2006 8 12 574	OR						2003 et 2006	6	7888	11274	
ORW 2000 à 2005 16 2701 445 2000 et 2003 4 3916 2758 2001 à 2006 18 833 2928 2001 et 2004 6 109 2442 2002 et 2005 6 143 3351 2003 et 2006 6 1937 2876 VACCARES VCS 2006 3 5 68 BEFRE BEF 2006 3 12 574 574	(FRDT11a)		1999 à 2004	16	443	2701	1999 et 2002	6	65	2054	
ORW 2001 à 2006 18 833 2928 2001 et 2004 6 109 2442 2002 et 2005 6 143 3351 2003 et 2006 6 1937 2876 VACCARES VCS 2006 3 5 68 BEFRE BEF 2006 3 12 574			2000 à 2005	16	2701		2000 et 2003	4	3916	2758	
VACCARES VCS 2006 3 5 68 BERRE BEF 2006 3 12 574		ORW				2928		_			
VACCARES VCS 2006 3 5 68 BERRE BEF 2006 3 12 574							2002 et 2005	6	143		
BERRE BEF 2006 3 12 574											
BERRE	VACCARES	VCS	2006	3	5	68					
	DEDDE	BEF	2006	3	12	574					
	BERRE	BES	2006	3	8	10					

* Abondance des eaux de transition (Blooms toutes espèces)

Tableau 75 : Résultats d'abondance par le pourcentage de blooms de toutes les espèces phytoplanctoniques (Belin, 2007)

Remarque : une seule donnée en 2000 sur l'ensemble des stations.

Abondance, % d'échantillons avec bloom (>100 000 grandes cellules, > 250 000 petites cellules) Méditerranéee, eaux de transition type lagunes, toute l'année, limites = 20 40 70 90

				ous les points us les résulta			ous les points résultat par m						nt DCE seuler résultat par n				
ME	nom ME	typo	nbmes	métrique	classe	nbmes	métrique	classe		nbmes			métrique			classe	
									2002-2007	2002+2005	2003+2006	2002-2007	2002+2005	2003+2006	2002-2007	2002+2005	2003+2006
FRDT02	Etang de Salses- Leucate	T10	257	7.392996	1	108	11.11111	1	74	26	27	13.51351	11.53846	14.81481	1	1	1
FRDT03	Etang de Lapalme	T10	11	27.27273	2	10	30	2									
FRDT05a	Etang de l'Ayrolle	T10	25	0	1	14	0	1									
FRDT06a	Etang de Gruissan	T10	17	5.882353	1	14	7.142857	1									
FRDT06b	Etangs du Grazel et de Mateille	T10	19	0	1	14	0	1									
FRDT10	Etang de Thau	T10	280	36.42857	2	105	40.95238	3	73	26	26	45.20548	30.76923	53.84615	3	2	3
FRDT11b	Etangs Palavasiens est	T10	38	13.15789	1	16	12.5	1	16		8	12.5		0	1		1
FRDT14a	Salins d'Aigues- Mortes	T10	6	0	1	5	0	1									
FRDT15a	Grand étang de Berre	T10	6	50	3	6	50	3	6		5	50		60	3		3

Abondance des eaux de transition (Comparaison des deux méthodes)

Tableau 76 : Synthèse de la qualité des masses d'eau (LR et PACA), à partir des P90 des données d'abondance phytoplanctonique : nano- et picoplancton et des blooms de toutes les espèces, pour 6 années consécutives (2001-2006, sauf pour Berre, Vaccarès et Grand Rhône) (Dérolez, 2007)

Code ME	Nom de la ME	CMF 2001-2006	Blooms 2001-2006
FRDT 02	Leucate		
FRDT 03	LaPalme		
FRDT 04	Bages		
FRDT 09	Grand Bagnas		-
FRDT 10	Thau		
FRDT 11a	Or		-
FRDT 11b	Palavasiens		
FRDT 14	Vaccarès		-
FRDT 15a	Berre		-
FRDT 20	Grand Rhône	-	

On remarque que, mis à part pour les masses d'eau de Bagnas, Palavasiens Est et Or, les niveaux de qualité obtenus avec les mesures par CMF sont inférieurs d'une à trois classes à ceux donnés par l'indicateur de biomasse (chlorophylle a) d'abondance (pourcentage de blooms) et de composition (pourcentage de blooms d'espèces nuisibles) (Durand et al., 2007). Cette différence s'explique bien pour l'abondance par CMF et la biomasse, car les cellules de petite taille dominent en nombre la communauté phytoplanctonique mais ne se répercutent pas forcément sur la concentration en chlorophylle-a du fait de leurs faibles dimensions.

La métrique "pourcentage de blooms" conduit à un classement en bon ou très bon état pour la majorité des masses d'eau, qui diffère de celui obtenu avec les mesures d'abondance par CMF. Seuls les étangs de Berre et Thau sont caractérisés par un état moyen lorsque les grilles proposées dans le document de C. Belin sont appliquées (Belin et al., 2007). La métrique proposée dans les recommandations d'Ifremer pour renseigner la composition phytoplanctonique (pourcentage de blooms d'espèces nuisibles) donne également un état bon ou très bon pour les masses d'eau de surveillance faisant l'objet d'identification de flore (données disponibles depuis 2000 pour Leucate, Bages, Thau, Prévost, Diana, Urbino et depuis 2006 pour La Palme).

7.6.3. Espèces nuisibles

Tableau 77 : Liste des espèces phytoplanctoniques nuisibles

	espèces présentes dans la liste " IOC taxonomic reference list of toxic plankton algae"
Dictyochophyceae	
Dictyocha	
Dictyocha fibula	
Dictyocha speculum	
Diatomophyceae, Centrales Chaetoceros socialis + radians	
Skeletonema costatum	
Dinophyceae, Gymnodiniales	1
Amphidinium carterae + operculatum	COI : A. carterae, operculatum
Cochlodinium polykrikoides	COI : C. polykrikoides
Gymnodinium + Gyrodinium	l l l l l l l l l l l l l l l l l l l
Gymnodinium	1
Gymnodinium chlarophorum	1
Gymnodinium catenatum	
Gymnodinium impudicum	COI : G. puchellum
Gymnodinium lohmanni	1
Gyrodinium	1
Gyrodinium spirale	1
Gyrodinium corsicum	COI
Karenia	COI : K. brevisulcata
Karenia brevis + papilionacea	COI
Karenia mikimotoi	COI
Karlodinium	COI : K. micrum, veneficum
Karlodinium micrum	COI : K. micrum
Dinophyceae, Oxyrrhinales	
Oxymhis	
Oxymhis marina	
Dinophyceae, Peridiniales	
Alexandrium hiranoi	COI
Alexandrium minutum	COI
Alexandrium tamarense + catenella + tamutum	COI : A. catenella et tamarense
Alexandrium catenella	COI
Alexandrium tamarense	COI
Alexandrium	
Alexandrium affine	
Alexandrium andersonii	
Alexandrium insuetum	
Alexandrium leei	
Alexandrium margalefii	
Alexandrium ostenfeldii	
Alexandrium pseudogonyaulax	
Alexandrium tamutum	
Alexandrium taylorii	

	espèces présentes dans la liste " IOC taxonomic reference list of toxic plankton algae"
Gonyaulax	
Gonyaulax digitale	
Gonyaulax spinifera	
Gonyaulax verior	
Gonyaulax grindleyi	
Lingulodinium	
Lingulodinium polyedrum	
Kryptoperidinium	
Kryptoperidinium foliaceum	
Scrippsiella + Ensiculifera + Pentapharsodinium	
+ Bysmatrum	
Bysmatrum	
Bysmatrum subsalsum	
Heterocapsa	COI : H. circularisquama
Heterocapsa niei	
Heterocapsa triquetra	
Peridinium quinquecorne	
Dinophyceae, Prorocentrales	
Prorocentrum mexicanum + rhathymum	COI
Prorocentrum minimum + balticum + cordatum	COI
Prorocentrum	
Prorocentrum compressum	
Prorocentrum concavum	
Prorocentrum emarginatum	
Prorocentrum gracile	
Prorocentrum lima + marinum	
Prorocentrum micans + arcuatum + gibbosum	
Prorocentrum scutellum	
Prorocentrum triestinum	
classe des Euglenophyceae	
Euglenophyceae	
classe des Prymnesiophyceae	
Prymnesiophyceae	
Prymnesiales	
Phaeocystis	COL B. alabasa associati
-	COI : P. globosa, pouchetii
Chrysochromulina Prymnesium	COI : C. leadbeateri, polylepis COI : P. calathiferum, faveolatum, parvum, patelliferum,
Frymnesium	zebrinum
classe des Raphidophyceae	
Raphidophyceae	
Raphidomonadales	
Chattonella	COI : C. antiqua, globosa, marina, subsalsa, verruculosa
Fibrocapsa japonica	COI
Heterosigma akashiwo	COI
Cyanobacteria	
Cyanobacteria (= Cyanophyceae)	
Anabaena	
Anaebaenopsis	
Merismopedia	
Microcystis	
Nostoc	
Oscillatoria	

7.6.4. Composition

* Eaux côtières

Tableau 78 : Résultats pour le paramètre composition (% blooms d'espèces nuisibles) pour les eaux côtières

Composition, % d'échantillons avec bloom nuisible (>1 000 000) Méditerranée, eaux côtières type 1, toute l'année, limites = 20 40 70 90 ou 10 17 35 80

ME	nom ME	typo			s les points les résultats				s les points ultat par mois				CE seulement ultat par mois	
		-76-	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse
			libilies	memque	20-40-70-90	10-17-35-80	indines	meurque	20-40-70-90	10-17-35-80	libilies	menique	20-40-70-90	10-17-35-80
FRDC03	03 Estuaire du Rhône	T11	88	0	1	1	36	0	1	1	36	0	1	1
FRDC04	Golfe de Fos	C20		2,013423	1	1	74	2,702703	1	1	59	3,389831	1	1

Méditerranée, eaux côtières type 2A, toute l'année, limites = 20 40 70 90 ou 10 17 35 80

ME	nom ME	typo			s les points les résultats				s les points ultat par mois				CE seulement ultat par mois	
		,,,,,	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse
			libilies	meurque	20-40-70-90	10-17-35-80	IIDIIIes	meurque	20-40-70-90	10-17-35-80	libilies	memque	20-40-70-90	10-17-35-80
FRDC02a	Racou Plage - Embouchure de l'Aude	C19	162	0,617284	1	1	85	1,176471	1	1	85	1,176471	1	1
FRDC02c	Cap d´Agde	C19	32	0	1	1	12	0	1	1				
FRDC02e	De Sète à Frontignan	C19	154	1,948052	1	1	73	2,739726	1	1				
FRDC02f	Frontignan - Pointe de l'Espiguette	C19	45	0	1	1	16	0	1	1				
FRDC05	Côte Bleue	C21	5	0	1	1	5	0	1	1				

Méditerranée, eaux côtières type 3W, toute l'année, limites = 20 40 70 90 ou 10 17 35 80

ME	nom ME	typo			s les points les résultats				s les points ultat par mois				CE seulement ultat par mois	
		.,,,,,	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse
				mounquo	20-40-70-90	10-17-35-80		mounquo	20-40-70-90	10-17-35-80		mounquo	20-40-70-90	10-17-35-80
FRDC01	Frontière espagnole - Racou Plage	C18	9	0	1	1	7	0	1	1	7	0	1	1
FRDC06b	Pointe d'Endoume - Cap Croisette et îles du Frioul	C20	10	0	1	1	10	0	1	1	10	0	1	1
FRDC07b	Cap croisette - Bec de l'Aigle	C22	11	0	1	1	9	0	1	1	9	0	1	1
FRDC07e	llot Pierreplane - Pointe du Gaou	C22	11	0	1	1	10	0	1	1	10	0	1	1
FRDC07g	Cap Cepet - Cap de Carqueiranne	C22	186	2,688172	1	1	91	1,098901	1	1	17	0	1	1
FRDC07h	lles du Soleil	C22	5	0	1	1	5	0	1	1	5	0	1	1
FRDC08d	Ouest Fréjus - Pointe de la Galère	C24	11	0	1	1	11	0	1	1	11	0	1	1
FRDC09c	Port de commerce de Nice - Cap Ferrat	C25	116	0	1	1	69	0	1	1	69	0	1	1

Méditerranée, eaux de transition type estuarien, toute l'année, limites = 20 40 70 90 ou 10 17 35 80

ME	nom ME	typo			les points les résultats				s les points ultat par mois				CE seulement ultat par mois	
""-	lioni inc	,,,,	nbmes	métrique	cla	sse	nbmes	métrique	cla	sse	nbmes	métrique	clas	sse
			IIDIIICS	metrique	20-40-70-90	10-17-35-80	IIDIIICS	meanque	20-40-70-90	10-17-35-80	IIDIIICS	metrique	20-40-70-90	10-17-35-80
FRDT20	Grand Rhône	T12	13	0	1	1	11	0	1	1	11	0	1	1

& Eaux de transition

Tableau 79 : Résultats pour le paramètre composition (% blooms d'espèces nuisibles) pour les eaux de transition

Méditerranée, eaux de transition type lagunes, toute l'année, limites = 20 40 70 90 ou 10 17 35 80

				tous les p				tous les p un résultat p								DCE seu sultat pa						
		١.										nbmes			métrique				cla	sse		
ME	nom ME	typo	nbmes	métrique	cla	isse	nbmes	métrique	cla	ISSE	2002-	2002+	2003+	2002-	2002+	2003+	2002- 2007	2002+ 2005	2003+ 2006	2002- 2007	2002+ 2005	2003+ 2006
					20-40- 70-90	10-17- 35-80	1		20-40- 70-90	10-17- 35-80	2007	2005	2006	2007	2005	2006	20-40- 70-90	10-17- 35-80	20-40- 70-90	10-17- 35-80	20-40- 70-90	10-17- 35-80
FRDT02	Etang de Salses- Leucate	T10	257	1,167315	1	1	108	1,851852	1	1	74	26	27	1,351351	3,846154	0	1	1	1	1	1	1
FRDT03	Etang de Lapalme	T10	11	0	1	1	10	0	1	1												
FRDT05a	Etang de l'Ayrolle	T10	25	0	1	1	14	0	1	1												
FRDT06a	Etang de Gruissan	T10	17	0	1	1	14	0	1	1												
FRDT06b	Etangs du Grazel et de Mateille	T10	19	0	1	1	14	0	1	1												
FRDT10	Etang de Thau	T10	280	1,785714	1	1	105	0,952381	1	1	73	26	26	1,369863	3,846154	0	1	1	1	1	1	1
FRDT11b	Etangs Palavasiens est	T10	38	0	1	1	16	0	1	1	16		8	0		0	1	1			1	1
FRDT14a	Salins d'Aigues- Mortes	T10	6	0	1	1	5	0	1	1												
FRDT15a	Grand étang de Berre	T10	6	0	1	1	6	0	1	1	6		5	0		0	1	1			1	1

7.7. POSIDONIE

Tableau 80 : Récapitulatif des résultats obtenus en Languedoc-Roussillon au cours de la campagne 2006 concernant : la profondeur de la limite inférieure (Prof.), le type de limite, la densité, la surface foliaire (S.F.), le déchaussement (D), le recouvrement (R) et le pourcentage de rhizomes plagiotropes (Plag.).

Stations	Prof. (m)	Туре	Densité (fais.m ⁻²)	S. F. (cm ² .fais ⁻¹)	D (cm)	R (%)	Plag. (%)
Banyuls	16	F	592,75 ± 60,75	113,04 ± 34,99	1,04 ± 1,20	45	0-30
Agde	5	R	503,91 ± 169,93	95,59 ± 75,52	1,93 ± 0,94	38	0-30

Tableau 81 : Valeurs moyennes des paramètres suivis au sein de chaque station en région Languedoc-Roussillon. Année 2007

Station	Densité (faisceaux.m ⁻²)	S. foliaire (cm².faisceau ⁻¹)	E/L (g.g ⁻¹)	Limite inférieure (m)	Etat de la limite
Carnon	$413,28 \pm 52,33$	$89,85 \pm 29,79$	$0,2000 \pm 0,1358$	12	Régressif
Aresquier	$749,22 \pm 70,89$	$61,57 \pm 28,61$	$0,2575 \pm 0,1540$	9	Régressif
Roc St Martin	$387,50 \pm 76,76$	$95,96 \pm 33,44$	$0,2605 \pm 0,1898$	9	Régressif
Agde port	$529,58 \pm 76,89$	$123,73 \pm 55,29$	$0,1710 \pm 0,0900$	7	Régressif
Agde matte	$784,69 \pm 234,99$	$71,65 \pm 34,27$	$0,2638 \pm 0,2096$	4	Régressif
Agde battu	$543,75 \pm 102,38$	$107,33 \pm 39,87$	$0,1655 \pm 0,0973$	4	Régressif
Banyuls Parasol	403,75 ± 77,30	156,52 ± 81,78	$0,1517 \pm 0,0516$	8	Franche
Banyuls Peyrefite	612,50 ± 169,02	177,52 ± 48,12	$0,1566 \pm 0,0513$	18	Régressif

Tableau 82 : Récapitulatif des résultats obtenus en région PACA (limite inférieure) au cours de la campagne 2006 concernant : la profondeur de la limite inférieure (Prof.), le type de limite, la densité, la surface foliaire (S.F.), le déchaussement (Déchaus.), le recouvrement (Recouv.) et le pourcentage de rhizomes plagiotropes (Plag.).

Limite inférieure	Descripteurs						
Stations	Prof(m)	Туре	Densité (fais.m ⁻²)	S. F. (cm².fais ⁻¹)	Déchaus. (cm)	Recouv (%)	Plag. (%)
Couronne	20,7	Р	183,50 ± 81,00	172,7 ± 38,81	5,43 ± 1,46	31	0-30
Carry	29	Р	153,13 ± 40,54	107,34 ± 32,55	2,44 ± 1,27	35	30-50
Prado	25	R	264,06 ± 66,00	158,04 ± 45,68	1,78 ± 1,04	39	0-30
Riou	18	F	345,63 ± 75,33	239,93 ± 51,80	6,16 ± 2,41	57	0-30
Cassis	24	F	196,00 ± 80,10	146,33 ± 49,77	4,06 ± 1,32	53	0-30
Brusc	30	R	190,63 ± 42,00	101,44 ± 24,34	2,97 ± 1,28	15	0-30
Toulon	24	F	317,19 ± 83,86	186,68 ± 45,58	3,72 ± 2,76	44	30-50
Levant	30	Р	228,13 ± 82,00	175,32 ± 46,57	4,75 ± 2,42	61	30-50
St Raphaël	25	F	304,69 ± 85,30	239,09 ± 48,60	5,31 ± 1,33	59	0-30
Antibes	21	R	251,56 ± 63,16	197,02 ± 38,53	5,72 ± 2,02	31	0-30

Tableau 83 : Récapitulatif des résultats obtenus en région PACA (profondeur intermédiaire) au cours de la campagne 2006 concernant : la profondeur de la limite inférieure (Prof.), le type de limite, la densité, la surface foliaire (S.F.), le déchaussement (Déchaus.), le recouvrement (Recouv.) et le pourcentage de rhizomes plagiotropes (Plag.).

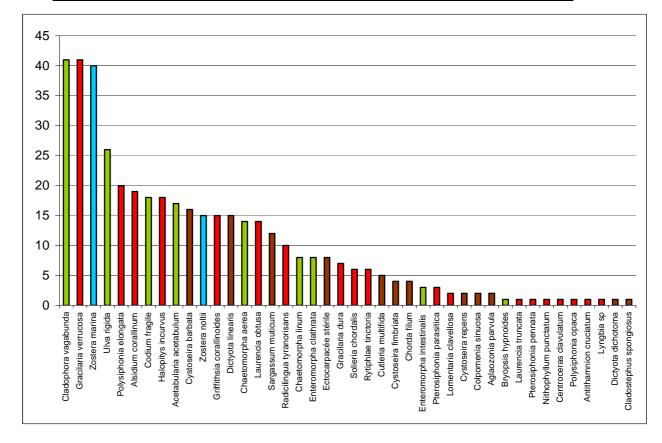
Profondeur intermédiaire		
Stations	Densité (fais.m ⁻²)	Surface foliaire (cm ² .fais ⁻¹)
Couronne	$228,00 \pm 26,68$	$126,00 \pm 38,88$
Carry-le-Rouet	$343,25 \pm 61,75$	$193,60 \pm 56,20$
Prado	$205,00 \pm 29,85$	$235,51 \pm 52,98$
Cassis	$300,00 \pm 43,41$	$170,00 \pm 39,25$
Brusc	$363,56 \pm 62,94$	$220,30 \pm 62,40$
Toulon	$426,56 \pm 60,13$	$245,22 \pm 84,23$
Levant	$340,00 \pm 89,13$	$283,49 \pm 98,40$
St Raphaël	$415,63 \pm 75,19$	$395,68 \pm 107,42$
Antibes	$230,00 \pm 32,43$	$233,06 \pm 41,37$

Tableau 84 : Récapitulatif des résultats obtenus en région PACA au cours de la campagne 2007

Station	Densité (faisceaux.m ⁻²)	S. foliaire (cm².faisceau ⁻¹)	E/L (g.g ⁻¹)	Limite inférieure (m)	Etat de la limite
Ponteau	$223,05 \pm 27,74$	$165,77 \pm 43,92$	$0,1357 \pm 0,0694$	18	Régressive
Couronne	$296,73 \pm 44,57$	$247,03 \pm 43,92$	$0,1403 \pm 0,0710$	21	Franche
Carry	$343,23 \pm 61,73$	$215,77 \pm 52,98$	$0,2444 \pm 0,0838$	29	Progressive
Ensuès	$292,58 \pm 55,3$	$272,00 \pm 59,57$	$0,1746 \pm 0,656$	28	Progressive
La Vesse	$205,31 \pm 27,22$	$242,70 \pm 67,80$	$0,1933 \pm 0,0478$	23	Régressive
Corbière	219,92 ± 41,41	189,44 ± 51,17	$0,3007 \pm 0,1144$	15	Régressive
Nord Pomègues	$315,63 \pm 64,35$	218,41 ± 53,23	$0,2198 \pm 0,0834$	26	Progressive
Prado	$324,50 \pm 15,03$	$235,39 \pm 46,62$	$0,1371 \pm 0,0490$	25	Progressive
P. Chèvres	$240,00 \pm 44,43$	$155,00 \pm 34,94$	$0,4134 \pm 0,1357$	25	Franche
Riou	466,02 ± 83,35	$220,02 \pm 59,15$	$0,1787 \pm 0,0518$	28	Franche
Calanque	296,25 ± 52,49	$205,95 \pm 56,22$	$0,2163 \pm 0,0528$	30	Régressive
Cassis	$370,12 \pm 59,42$	$205,96 \pm 46,46$	$0,2391 \pm 0,1101$	24	Franche
Figuerolle	$350,00 \pm 67,15$	$216,68 \pm 43,05$	$0,1877 \pm 0,0592$	27	Progressive
Bandol	$384,38 \pm 68,96$	$309,75 \pm 76,14$	$0,1642 \pm 0,0838$	30	Régressive
Brusc	$363,54 \pm 62,94$	$208,50 \pm 66,22$	$0,0408 \pm 0,0304$	30	Régressive
Carqueiranne	$426,56 \pm 60,13$	$328,31 \pm 72,68$	$0,1617 \pm 0,0499$	24	Progressive
B. Garonne	$479,17 \pm 83,31$	$300,90 \pm 82,89$	$0,2324 \pm 0,0897$	22	Régressive
Levant	529,76 ± 107,71	$275,99 \pm 65,73$	$0,2337 \pm 0,0758$	30	Progressive
Giens	$423,75 \pm 59,16$	291,52 ± 69,61	$0,0870 \pm 0,0376$	32	Progressive
Bénat	436,40 ± 72,19	266,73 ± 81,63	$0,0923 \pm 0,0457$	35	Régressive
St Raphael	415,63 ± 75,21	$358,54 \pm 77,56$	$0,1680 \pm 0,0699$	25	Franche
Cap Roux	$376,25 \pm 86,12$	$330,13 \pm 87,44$	$0,1360 \pm 0,0628$	34	Progressive
Antibes	$348,94 \pm 73,12$	$292,99 \pm 70,23$	$0,2210 \pm 0,1149$	21	Franche
Villefranche	198,61 ± 45,71	$154,02 \pm 48,12$	$0,2735 \pm 0,0854$	15	Régressive

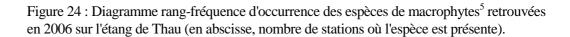
7.8. MACROPHYTES

7.8.1. Espèces climax


Tableau 85 : Liste des espèces climax

Groupe	Genre	Espèce
ALGUES VERTES	Acetabularia	Acetabularia acetabulum
ALGUES VERTES	Bryopsis	Bryopsis plumosa
ALGUES ROUGES	Centroceras	Centroceras clavulatum
ALGUES ROUGES	Ceramium	Ceramium rubrum
ALGUES ROUGES	Ceramium	Ceramium tenerrimum
ALGUES ROUGES	Chondracanthus	Chondracanthus acicularis
ALGUES ROUGES	Chondria	Chondria capillaris
ALGUES ROUGES	Chondria	Chondria dasyphylla
ALGUES ROUGES	Chylocladia	Chylocladia verticillata
ALGUES BRUNES	Cladostephus	Cladostephus spongiosus
ALGUES BRUNES	Cystoseira	Cystoseira barbata
ALGUES BRUNES	Cystoseira	Cystoseira repens
ALGUES BRUNES	Dictyota	Dictyota dichotoma
ALGUES BRUNES	Dictyota	Dictyota linearis
ALGUES BRUNES	Dictyota	
ALGUES ROUGES	Gelidium	Gelidium crinale
ALGUES ROUGES	Grateloupia	Grateloupia filicina
ALGUES ROUGES	Griffithsia	Griffithsia corallinoides
ALGUES ROUGES	Gymnogongrus	Gymnogongrus griffithsiae
ALGUES VERTES	Lamp rothamnium	Lamprothamnium papulosum
ALGUES ROUGES	Laurencia	Laurencia microcladia
ALGUES ROUGES	Lomentaria	Lomentaria clavellosa
ALGUES ROUGES	Lophosiphonia	Lophosiphonia obscura
ALGUES ROUGES	Lophosiphonia	Lophosiphonia spp
ALGUES ROUGES	Lophosiphonia	Lophosiphonia subadunca
ALGUES ROUGES	Osmundea	Osmundea truncata
ALGUES ROUGES	Polysiphonia	Polysiphonia elongata
ALGUES ROUGES	Polysiphonia	Polysiphonia opaca
ALGUES ROUGES	Pterosiphonia	Pterosiphonia parasitica
ALGUES ROUGES	Pterosiphonia	Pterosiphonia pennata
ALGUES ROUGES	Pterothamnion	Pterothamnion plumula
ALGUES ROUGES	Radicilingua	Radicilingua thyzanorisans
PHANEROGAMES	Ruppia	Ruppia cirrhosa
ALGUES BRUNES	Scytosiphon	Scytosiphon simplicissimus
ALGUES ROUGES	Solieria	Solieria filiformis
ALGUES BRUNES	Sphacelaria	
ALGUES ROUGES	Spyridia	Spyridia filamentosa
ALGUES VERTES	Valonia	Valonia aegagropila
ALGUES VERTES	Valonia	Valonia utricularis
PHANEROGAMES	Zostera	Zostera marina
PHANEROGAMES	Zostera	Zostera noltii

7.8.2. Etang de THAU


Tableau 86 : Liste des espèces de macrophytes ¹ identifiées lors du diagnostic simplifié de 2006 sur l'étang de Thau.

Zostera marina	С	Halopitys incurvus	D	Antithamnion cruciatum	C
Zostera noltii	C	Griffithsia corallinoides	C	Lyngbia sp	C
Cladophora vagabunda	О	Laurencia obtusa	C	Cystoseira barbata	C
Ulva rigida	О	Radicilingua tyranorisans	C	Dictyota linearis	C
Codium fragile	О	Gracilaria dura	D	Sargassum muticum	D
Acetabularia acetabulum	C	Solieria chordalis	D	Ectocarpacée stérile	О
Chaetomorpha aerea	О	Rytiphlae tinctoria	D	Cutleria multifida	D
Chaetomorpha linum	О	Pterosiphonia parasitica	C	Cystoseira fimbriata	C
Enteromorpha clathrata	О	Lomentaria clavellosa	C	Chorda filum	D
Enteromorpha intestinalis	О	Laurencia truncata	C	Cystoseira repens	C
Bryopsis hypnoides	C	Pterosiphonia pennata	C	Colpomenia sinuosa	D
Gracilaria verrucosa	D	Nithophyllum punctatum	C	Aglaozonia parvula	C
Polysiphonia elongata	С	Centroceras clavulatum	C	Dictyota dichotoma	C
Alsidium corallinum	D	Polysiphonia opaca	C	Cladostephus spongiosus	C

-

 $^{^1}$ En bleu figurent les phanérogames, en vert les algues vertes, en rouge les algues rouges et en brun les algues brunes. C : climax, D : dérivante, O : opportuniste.

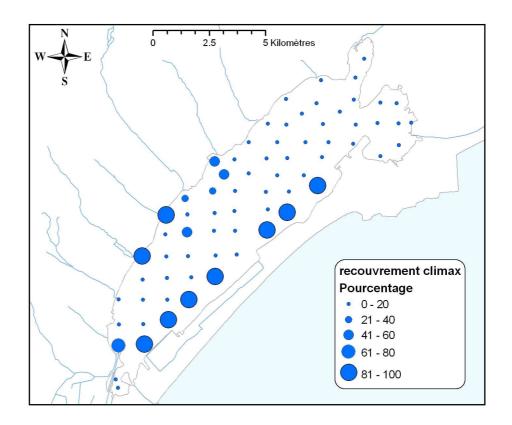


Figure 25 : Pourcentage de recouvrement des espèces climax sur les 70 stations benthiques de l'étang de Thau.

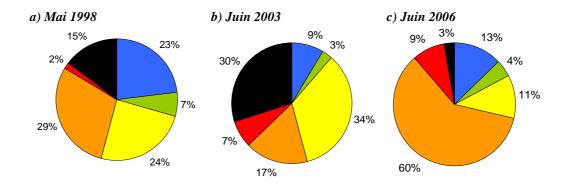


Figure 26 : Répartition des états des stations de suivi des macrophytes pour les diagnostics de 1998, 2003 et 2006.

Très bon état
Bon état
Etat moyen
Etat médiocre
Etat mauvais
Recouvrement <5%

7.8.3. Complexe PALAVASIEN

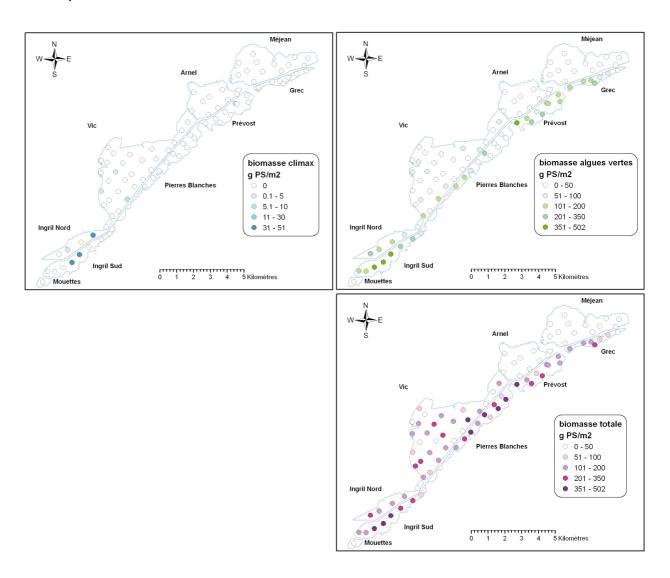


Figure 27 : Distribution de la biomasse d'espèces climax, de la biomasse d'algues vertes opportunistes et de la biomasse totale dans les étangs palavasiens en 2006 (g de poids sec/m²).

Tableau 87 : Evolution pluriannuelle du diagnostic macrophytes pour les étangs palavasiens Ouest.

Ingril Nord	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
1999	30	0	0	100	2	0	0	2	
2000	90	44,4	11,1	44,4	9	1	4	4	
2001	40	21,4	16,7	61,9	12	4	2	6	
2004	65	6,3	26,6	67,2	14	5	5	4	
2006	60	9,5	9,6	81	14	5	3	6	

Ingril Sud	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
1999	90	0	1,1	98,9	4	1	1	2	
2000	65	31,3	7,5	61,2	12	6	2	4	
2001	70	6,9	6,9	86,1	11	3	3	5	
2004	85	5,5	3,6	90,4	15	4	5	6	
2006	80	3	0,5	96,5	10	3	3	4	

Vic	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
2001	30	0	77	23	7	0	3	4	
2004	35	0,3	88,9	11,1	12	4	3	5	
2006	75	2,5	59,0	38,5	12	4	3	5	

Pierre-Blanche	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
2001	70	0	21	79	11	3	2	6	
2004	65	0	87	13	8	1	2	5	
2006	75	0	57	43	5	1	1	3	

RV = Recouvrement Végétal total. RC = Recouvrement Climax relatif. RD = Recouvrement algues Dérivantes relatif. RO = Recouvrement algues Opportunistes relatif. Nsp = Nombre d'espèces total. NspC = Nombre d'espèces Climax. NspD = Nombre d'espèces Dérivantes. NspO = Nombre d'espèces Opportunistes. Etat = Etat des macrophytes par rapport à l'eutrophisation.

Tableau 88 : Evolution pluriannuelle du diagnostic des macrophytes pour les étangs palavasiens Est.

Arnel	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
2001	60	0	73	26	5	0	2	3	
2004	10	0	3	97	4	0	2	2	
2006	15	0	60	40	3	0	1	2	

Prévost	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
2001	95	0	21	78	8	0	3	5	
2004	95	0	23	77	7	0	2	5	
2006	55	0	0	99	5	1	1	3	

Méjean-Pérols	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
2001	1	-	-	-	2	0	0	2	
2004	1	-	-	-	2	0	1	1	
2006	1	-	-	-	2	0	1	1	

Grec	RV	RC	RD	RO	Nsp	NspC	NspD	NspO	Etat
1999	95	0	0	100	1	0	0	1	
2000	15	0	0	100	1	0	0	1	
2001	15	0	0	100	1	0	0	1	
2004	60	0	0	100	2	0	0	2	
2006	55	0	0	100	1	0	0	1	

RV = Recouvrement Végétal total. RC = Recouvrement Climax relatif. RD = Recouvrement algues Dérivantes relatif. RO = Recouvrement algues Opportunistes relatif. Nsp = Nombre d'espèces total. NspC = Nombre d'espèces Climax. NspD = Nombre d'espèces Dérivantes. NspO = Nombre d'espèces Opportunistes. Etat = Etat des macrophytes par rapport à l'eutrophisation.

7.8.4. Etang Salse-Leucate

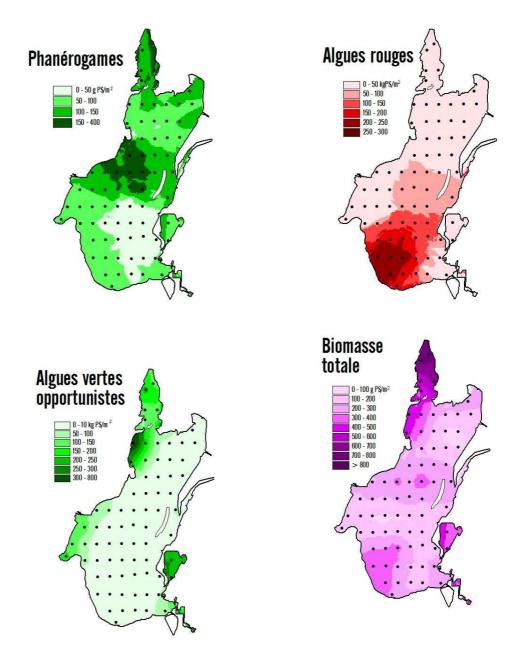


Figure 28 : Distribution spatiale de la densité de biomasse des phanérogames, des algues rouges, des algues vertes opportunistes et de la biomasse totale dans la lagune de Salses-Leucate en 2004 (krigeage sur Arcview 3.2).

Peuplements et distribution de la biomasse (RSL, 2004)

Les herbiers de phanérogames (*Zostera* et *Ruppia*), répartis sur les bordures ou les hauts fonds au nord, au sud, à l'est et à l'ouest, recouvrent une bonne partie de l'étang (Figure 28). Parmi les trois phanérogames rencontrées, *Zostera noltii* est la plus fréquente et abondante. C'est la seule espèce de macrophyte que l'on trouve dans les

trois—quart des prélèvements. L'espèce *Ruppia* est surtout localisée sur les bordures ouest et elle n'est présente que dans 7 stations.

Les peuplements d'algues rouges sont majoritairement localisés dans le bassin sud et sont essentiellement de nature dérivantes. Les plus fortes biomasses sont majoritairement dues aux espèces *Alsidium corallinum* et *Halopitys incurvus*.

Les algues vertes opportunistes sont surtout présentes dans l'Anse de la Roquette et aux débouchés des deux principales sources karstiques Font Dame et Font Estramar, dans l'anse de Fitou, dans l'Anse du Paurel et le bassin des Dindilles. Elles sont essentiellement représentées par l'espèce *Cladophora battersi (glomerata)* qui est présente dans 33 stations et qui forment dans la partie nord des populations relativement denses qui recouvrent parfois totalement l'herbier. Ulva rigida, bien que présentes dans 35 des prélèvements, n'est dominantes que dans deux mais avec de faibles densités de biomasses. Par rapport à 2001, on ne note d'expansion de cette espèce.

Valonia aegagropila est surtout présente dans le bassin nord, notamment l'anse du Paurel où elles présentes ces abondances maximales. En terme d'occurrence, elle est retrouvée dans 33 prélèvements contre seulement 29 en 2001, et elle est présente dans 6 stations du bassin sud alors qu'elle y était absente en 2001 Cependant, ce bilan ne permet de conclure à une expansion de cette espèce étant donnée que le nombre de stations échantillonnées a été augmentées lors de cette campagne.

A noter que la characée *Lamprothamnium papillosum* a eté retrouvée dans 7 stations. En terme de **biomasse totale**, le schéma de répartition observé résulte de celui des algues vertes opportunistes et des phanérogames pour la partie nord et centrale et des algues rouges pour la partie sud. En globalité, cette répartition de la biomasse correspond à celle observée lors du dernier diagnostic complet de 1999 (Ifremer-Créocean-UMII, 2000).

Diagnostic

Sur les 78 stations échantillonnées, seules 6 ne présentaient qu'un recouvrement végétal < 5% pour ne pas être diagnostiquées, elles sont localisées dans les secteurs les plus profonds. Un peu moins de la moitié des autres sont en bon état pour l'eutrophisation (24 bleues, 11 vertes), les 37 autres sont de qualité moyenne (16) ou médiocre (21), aucune n'est mauvaise. De manière globale, les stations de qualité moyennes à médiocres sont plutôt distribuées dans le bassin sud alors que les stations de très bonne et bonne qualité vis-à-vis de l'eutrophisation sont situées dans le bassin nord. Cette répartition est la conjugaison de celles de la biomasse des algues rouges et des phanérogames.

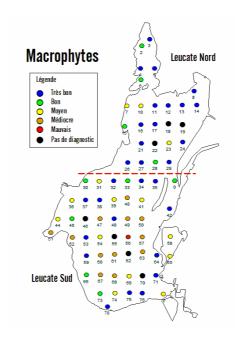


Figure 29 : Distribution des états associés aux macrophytes dans la lagune de Salses-Leucate. L'absence de diagnostic (couleur noire) résulte d'un recouvrement végétal insuffisant pour l'établir (< 5%).

Au total 34 espèces ont été rencontrées sur l'ensemble de la lagune avec un recouvrement moyen de 65 %. Cette richesse spécifique est comparable à celle observée en 2001 lors du diagnostic complet (35 espèces) et un peu plus élevées que celle de 1999 où seulement 24 espèces avait été comptabilisées. Cependant, cette augmentation de richesse est à pondérer par le fait qu'un plus grand nombre de station ont été examiné cette année.

Pour chacun des secteurs le diagnostic par les macrophytes aboutit à un très bon état pour la partie Nord et à un état moyen pour la partie sud. La comparaison avec les diagnostics précédents indique que les peuplements macrophytes dans la lagune de Salses-Leucate sont stables. On peut cependant noter que le pourcentage d'espèces climax a légèrement diminuée dans la partie sud aboutissant à un déclassement du compartiment. Cependant, il est à noter qu'en 1999, le pourcentage d'espèces climax mesuré était égal au seuil entre l'état bon et moyen (50%) ce qui avait conduit à un classement à l'état supérieur (bon). Au delà de ce simple effet de seuil, force est de constater une très légère dégradation des peuplements macrophytes vis-à-vis de l'eutrophisation.

Les différences observées sur les pourcentages de recouvrement végétaux sont difficilement interprétables entre 2001 et 2004 étant donné la différence de protocole, notamment le nombre supérieur de stations relativement profondes en 2004.

Tableau 89 : Recouvrement végétal, richesse spécifique et abondance relative des espèces climax, et états vis-à-vis de l'eutrophisation pour les macrophytes pour les années 1999, 2001 et 2004 et les secteurs Nord et Sud de la lagune de Salses-leucate.

Secteur	Année	Recouvrement végétal (%)	Nb. Espèces	% climax	Etat
	1999	-	18	71	Bon
Leucate Nord	2001*	91%	25	56	Bon
	2004	71%	25	77	Très bon
	1999	-	21	50	Bon
Leucate Sud	2001*	82%	29	36	Moyen
	2004	62%	30	43	Moyen

(*): En 2001, il s'agissait d'un diagnostic simplifié basé sur le recouvrement relatif des peuplements d'espèces climax et non sur la biomasse.

7.8.5. Etang de La Palme

Le précédent diagnostic des communautés macrophytes a eu lieu en 2002 lors du diagnostic complet de la lagune de La Palme (Ifremer, 2003). Celui-ci avait conclut à un très bon état des macrophytes vis-à-vis de l'eutrophisation avec une couverture végétale élevée et un richesse spécifique satisfaisante. Les herbiers de phanérogames (*Zostera noltii et Ruppia cirrhosa*) et de characées constituaient les peuplements dominants.

En 2005, lors de la campagne de terrain, il a été observé une très forte diminution du niveau du plan d'eau, probablement suite au déficit hydrique qui a caractérisé cette année. Sur les bords, de grandes surfaces étaient émergées avec des herbiers et des acétabulaires¹ séchant. Sur les 12 zones examinées (Figure 7), trois présentent une couverture végétale insuffisante pour établir un diagnostic. Sur les 9 autres, le taux de recouvrement est relativement faible (moyenne 35,3%) et en diminution par rapport au diagnostic de 2002. Le diagnostic simplifié des macrophytes révèle cependant un très bon état vis-à-vis de l'eutrophisation pour chacune d'entre-elles. L'état des macrophytes pour la lagune de La Palme est donc très bon vis-à-vis de l'eutrophisation.

¹ Acétabulaire : algue verte de Méditerranée

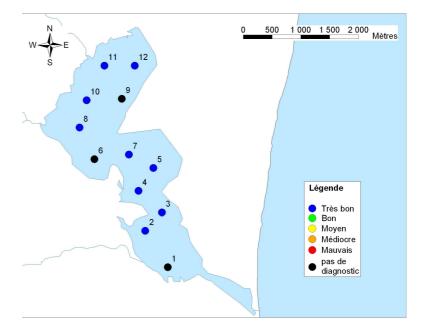


Figure 30 : Distribution des états des macrophytes dans la lagune de La Palme en 2005. La couleur noire indique un recouvrement végétal inférieur à 5% interdisant tout diagnostic. (RSL, 2005)

Du point de vue de la richesse spécifique, au total, 6 espèces ont été observées lors du diagnostic contre 10 en 2002. Les herbiers à *Zostera* et à *Ruppia*, monospécifiques ou mixtes (plutôt dans la partie sud de la lagune), demeurent les peuplements dominants. Cependant, ils présentent une répartition clairsemée, en tâches alors qu'en 2002 ils recouvraient entièrement de large surface. Les macroalgues sont représentées par les acétabulaires, deux espèces d'algues rouges (*Polysiphonia opaca* et *Chondria capillaris*), et l'algue verte opportuniste *Chaetomorpha aerea* qui est rencontrée surtout dans la partie nord de la lagune.

La diminution de la richesse spécifique résulte du fait que deux genres d'algues vertes opportunistes (*ulves* et *cladophores*) n'ont pas été observés cette année, ce qui du point de vue de l'eutrophisation est un constat plutôt satisfaisant. Par contre, le point le plus remarquable est l'absence cette année de la characée *Lamprothamnium papulosum* alors qu'elle constituait de larges herbiers en 2002 (Ifremer, 2003) mais encore en 2004 (observations de terrain). Il est vraisemblable qu'au printemps, suite aux conditions de sècheresse, les eaux n'aient été trop salées pour permettre la germination des graines, processus qui nécessite de fortes dessalures. Cependant, ce phénomène n'est pas irréversible puisque ses graines sont capables de demeurer dans les sédiments durant plusieurs années jusqu'à retrouver des conditions favorables à leur germination.

Tableau 90 : Paramètres du diagnostic simplifié des macrophytes pour la lagune de La Palme en 2005.

LaPame	RV	RC	RD	RO	Nsp	NpC	NpD	NpO	Etat
2005	26,5%	98%	0	2%	6	5	0	1	

RV = recouvrement végétal (%). RC = recouvrement des espèces climax (%). RD = recouvrement des espèces dérivantes (%). RO = recouvrement des espèces opportunistes (%). Nsp = nombre d'espèces. NspC = nombre d'espèces climax. NspD = nombre d'espèces dérivantes. NspO = nombre d'espèces opportunistes. Etat = Etat par rapport à l'eutrophisation

7.8.6. Etang Bages - Sigean

Peuplements et distribution de la biomasse:

Dans l'étang de Bages (stations 2 à 5), les macrophytes sont en nette régression. Lors du diagnostic complet de 1999, sur l'ensemble des quatre stations diagnostiquées, l'algue rouge *Gracilaria bursa-pastoris* constituait 95% d'une biomasse moyenne de 60 g/m2 avec un taux de recouvrement moyen de 10%.

En 2002, le diagnostic simplifié révèle, à l'ouest du bassin (stations 2 et 4), une prédominance, avec un taux de recouvrement de 100%, de *Cladophora vagabonda* qui étouffe des touffes éparses d'herbiers à *Zostera marina* et *Zostera noltii*. A l'est (stations 3 et 5), ces mêmes algues vertes sont dominées par l'algue rouge *Gracilaria verrucosa*, avec des taux de recouvrement qui restent importants (60%).

En 2005, le taux de recouvrement des stations à l'est du bassin de Bages est nul. A l'ouest, la biomasse, majoritairement constituée par l'algue rouge *Gracilaria verrucosa*, n'excède pas 55 g/m² avec un taux de recouvrement inférieur à 5%.

Dans les bassins situés entre l'étang de Bages et le nord de l'île de la Planasse, les fortes biomasses sont majoritairement (à plus de 95%) dues à la présence de gracilaires.

Dans les zones les plus profondes (stations 10, 14) la biomasse est plus faible mais *Gracilaria verrucosa* reste largement dominante, elle représente encore 80% de la biomasse. Dans toutes ces secteurs, quand elle n'est pas seule, cette algue rouge est accompagnée de l'algue verte *Cladophora vagabonda*. Les observations de 2005 font apparaître peu de différences avec celles de 1999 en terme d'espèces présentes et dominantes, de taux de recouvrement et de biomasse. A noter toutefois que les fortes biomasses de *Gracilaria verrucosa* et *Cladophora vagabonda* observées en 1999, sur les rives est au nord du débouché du Canelou ont laissé la place, en 2005, à l'herbier à *Zostera noltii*.

Plus au sud, la recolonisation de l'Anse de Peyriac par les herbiers à zostères observée en 1999, confirmée en 2002 par le diagnostic simplifié des macrophytes est encore observée en 2005 avec toutefois une modification des peuplements dominants et de leur localisation. Depuis 1999, les herbiers à *Zostera noltii* sont en régression au fond de l'Anse de Peyriac (station 15) au profit des algues vertes opportunistes alors qu'à l'ouest

de l'île de la Planasse (stations 16, 17), les herbiers à Zostera marina sont dominants devant Gracilaria verrucosa.

Dans la zone située à l'embouchure de la Berre (station 20), en fonction des apports en nutriments on peut observer soit une prédominance des algues vertes opportunistes comme en 2005, ou d'importants développement d'algues rouges comme en 1999.

L'étang de la Sèche, à l'est de l'île de l'Aute est, entièrement colonisé par des herbiers à *Zostera noltii* et Ruppia cirrhosa dans le secteur le plus au nord.

Les herbiers à zostères (*Zostera noltii* et *Zostera marina*) persistent également autour du chenal à l'extrême sud de la lagune (station 34).

Dans la partie centrale du bassin sud, cinq stations sur les sept échantillonnées présentent des taux de recouvrement inférieurs à 5%. Le taux de recouvrement aux deux stations à l'ouest (stations 28 et 33) pour lesquelles un diagnostic a pu être réalisé sont de 65%. La densité de biomasse moyenne est inférieure à 30 g/m2 et est constitué pour plus de la moitié par des algues rouges dérivantes (*Gracilaria verrucosa*) et des cladophores. Les espèces climax constituent moins de 20% de la biomasse.

Dans l'étang de Tallavigne (station 35), les algues vertes *Ulva rigida* et *Cladophora vagabonda* constituent la totalité de la biomasse. Cette prolifération d'algues opportunistes est entretenue par les rejets de la station d'épuration de Sigean qui rejoignent la lagune au fond de cette anse confinée.

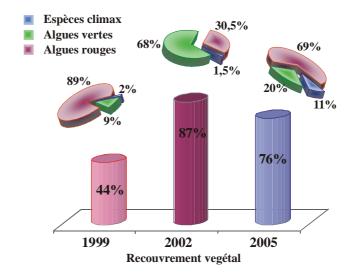


Figure 31 : **Partie nord de l'étang deBages-Sigean** (BGN). Recouvrement végétal et répartition de la biomasse (1999 et 2005) ou pourcentage de recouvrement (2002) pour les différents groupes fonctionnels de macrophytes.(RSL, 2005)

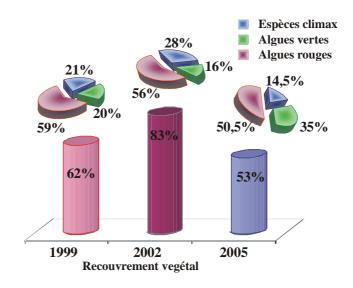


Figure 32 : **Partie médiane de l'étang de Bages-Sigean** (BGM). Recouvrement végétal et répartition de la biomasse (1999 et 2005) ou pourcentage de recouvrement (2002) pour les différents groupes fonctionnels de macrophytes. .(RSL, 2005)

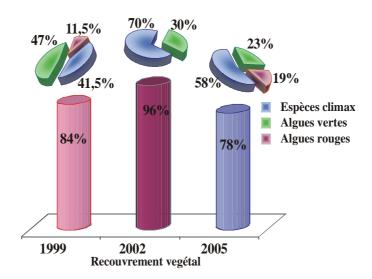


Figure 33 : **Partie sud de l'étang de Bages-Sigean** (BGS). Recouvrement végétal et répartition de la biomasse (1999 et 2005) ou pourcentage de recouvrement (2002) pour les différents groupes fonctionnels de macrophytes. .(RSL, 2005)

Diagnostic

L'état général du compartiment « macrophytes » est déterminé à partir du pourcentage moyen de biomasse des espèces climax et du nombre total d'espèces recensées sur l'ensemble des prélèvements qui présentent une couverture végétale supérieure à 5%.

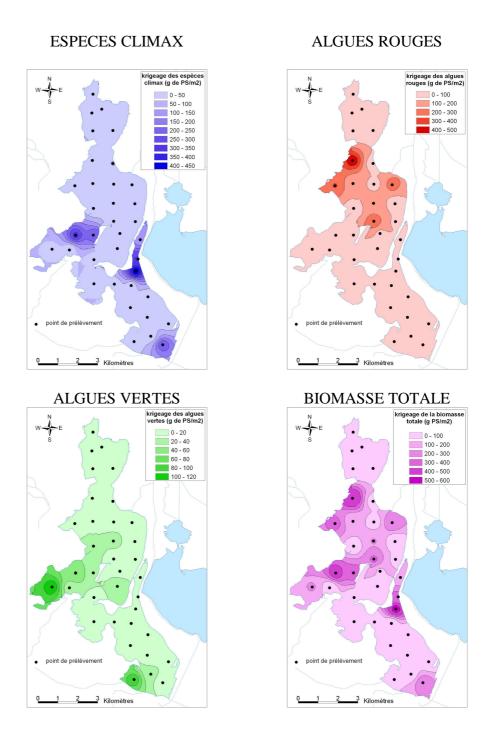


Figure 34 : Distribution spatiale de la densité de biomasse des espèces climax, des algues rouges, des algues vertes opportunistes et de la biomasse totale dans la lagune de Bages-Sigean, en 2005 (krigeage sur Arcview 8.0). .(RSL, 2005)

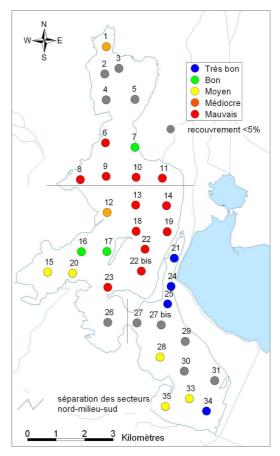


Figure 35 : Distribution des états associés aux macrophytes dans la lagune de Bages-Sigean en 2005. L'absence de diagnostic (couloir noire) résulte d'un recouvrement végétal insuffisant (<5%). (RSL, 2005)

Bages Nord

En 2005, quatre des onze stations échantillonnées ne présentent pas un recouvrement suffisant pour établir un diagnostic. La présence de l'herbier sur la rive est, au nord du rejet du Canelou, confère à cette partie nord de l'étang une qualité « moyenne ». Le gain d'une classe de qualité par rapport aux années précédentes ne doit cependant pas faire oublier l'absence quasi totale de végétation dans l'étang de Bages.

Tableau 91 : Récapitulatif des diagnostics complets des macrophytes en 1999 et 2005 et simplifiés de 2002, dans la partie nord de la lagune de Bages-Sigean (BGN)

Diagnostic complet	RV	%BC	Nsp	Q
macrophytes				
Juillet 1999	44	2	5	
Juin 2005	76	11	5	
Diagnostic simplifié	RV	RC	Nsp	Q
macrophytes				
In:11a4 2002	07	1.5	0	

Légende: $RV = recouvrement \ végétal$. $\%BC = pourcentage \ de \ biomasse \ des \ espèces$. $RC = recouvrement \ des \ espèces$ climax. $Nsp = nombre \ d'espèces$. $Q = qualit\'e \ de \ l'eutrophisation$.

L'état vis-à-vis de l'eutrophisation des autres compartiments dans ce bassin ne permet pas d'expliquer une telle régression de la végétation. A l'heure actuelle, aucune explication n'a pu être donnée, toutefois cette question est récurrente depuis maintenant six ans.

Bages Milieu

Le compartiment « macrophytes » du secteur médian de l'étang de Bages-Sigean est, comme les années précédentes, de qualité moyenne. Cette stabilité est due à la colonisation des herbiers à l'ouest de l'île de la Planasse. Cependant depuis 1999 les espèces dérivantes et opportunistes dominent toujours dans ce secteur de l'étang et la tendance à l'augmentation du taux de recouvrement des espèces climax observée en 2002 n'a pas été confirmée en 2005.

Tableau 92 : Récapitulatif des diagnostics complets de 1999 et 2005 et simplifié de 2002, des « macrophytes » dans la partie médiane de la lagune de Bages-Sigean (BGM).

Diagnostic complet	RV	%BC	Nsp	Q
macrophytes				
Juillet 1999	62	21	6	
Juin 2005	53	14,5	7	

Diagnostic simplifié macrophytes	RV	RC	Nsp	Q
Juillet 2002	83	28	13	

Légende : cf. Erreur ! Source du renvoi introuvable.

Bages Sud

La malaïgue du mois de juin 2003 est vraisemblablement à l'origine de la « désertification » le long de la rive est et au centre du bassin de Bages sud. Sur les sept échantillonnées, l'étang de la Sèche et la zone à l'extrême sud affichent un « très bon » état vis-à-vis de l'eutrophisation. La prédominance des algues vertes opportunistes et des algues rouges dérivantes à l'ouest du bassin fait que, en moyenne l'état vis-à-vis de l'eutrophisation du compartiment « macrophytes » est de bonne qualité.

Tableau 93 : Récapitulatif des diagnostics complets de 1999 et 2005 et simplifié de 2002, des « macrophytes » dans la partie sud de la lagune de Bages-Sigean (BGS).

Diagnostic complet	RV	%BC	Nsp	Q
macrophytes				
Juillet 1999	84	41,5	8	
Juin 2005	78	58	13	

Diagnostic simplifié	RV	RC	Nsp	Q
macrophytes				
Juillet 2002	96	70	14	

Légende : cf. Erreur ! Source du renvoi introuvable.

7.8.7. Etang de l'Or

Le diagnostic des macrophytes a été réalisé en juin 2005. Sur les 32 stations benthiques échantillonnées, seulement cinq n'ont pu faire l'objet d'un diagnostic en raison de la faiblesse de leur recouvrement macrophytique (zones 11, 16, 17, 19 et 31).

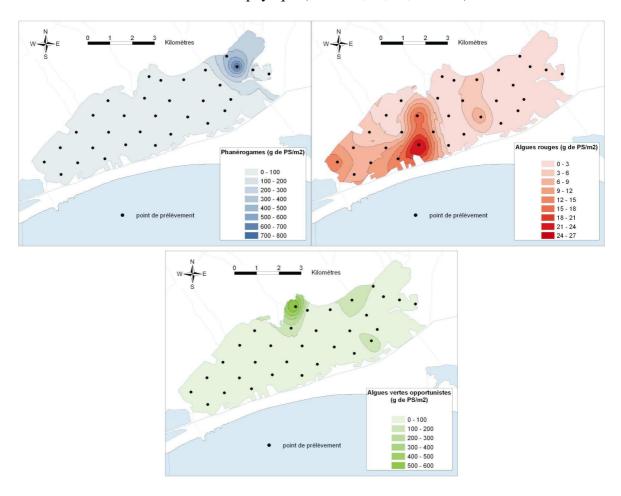


Figure 36 : Distribution de la biomasse de phanérogames, d'algues rouges et d'algues vertes opportunistes dans l'étang de l'Or en 2005 (isopoids obtenus par krigeage).

C'est en quelque sorte un progrès par rapport aux années précédentes où on dénombrait entre 17 et 23 stations dans ce cas, principalement localisées dans la partie Ouest (Ifremer, 2000, 2002, 2003, 2004 et 2005). Cette année les deux parties d'étang sont mieux équilibrées, mais les états restent mauvais à médiocre pour les anciennes stations comme pour celles nouvellement diagnostiquées.

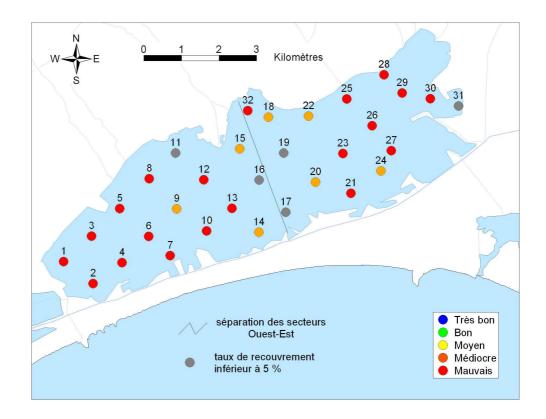


Figure 37 : Distribution de l'état des macrophytes dans l'étang de l'Or en 2005.

Distribution des macrophytes

Phanérogames

En 2005, la population de *Potamogeton pectinatus*, phanérogame d'eau douce, est toujours présente à l'extrémité nord-est de l'étang de l'Or, mais contrairement aux années précédentes, elle est moins abondante et possède un recouvrement moins important. Seules les zones 28, 29 et 30 présentent de véritables populations. Il y a très peu d'herbiers frangeants, ils sont envahis et étouffés par l'abondance de *Chaetomorpha aerea* qui les recouvre et les étiole.

Comme les années précédentes, la phanérogame climax *Ruppia cirrhosa* est présente sur les bords de l'étang (là où la profondeur ne dépasse pas 0,3 m). Elle est trouvée en touffes au Sud, des marais du Petit Travers où elle forme des herbiers de plusieurs dizaines de m², à l'anse de la Radelle (zones 7, 10 et 14). Les touffes éparses observées les années précédentes sur la bordure Nord, et qui étaient globalement en recul depuis quelques années, n'ont pas été observées en 2005.

Deux pieds de *Zostera Noltii* ont également été retrouvés dans les zones 9 et 19, pourtant au centre de l'étang. C'est la première fois depuis le suivi du RSL que cette phanérogame climax est retrouvée, et compte tenu de sa présence extrêmement localisée son devenir paraît très incertain.

Algues

La disparité de recouvrement Est/Ouest que l'on observait depuis 1999 s'est dissipée cette année, notamment grâce à un fort développement de l'algue rouge dérivante *Chondria capillaris* qui forme de véritables populations sur la partie Ouest de l'étang. Sa présence importante entraîne une augmentation du recouvrement végétal de l'étang qui atteint exceptionnellement 45 % cette année. Les raisons de sa présence nous sont encore inconnues. *Chondria* n'avait été observée sur l'étang qu'en 2002 et 2003, et à ce moment là, on la retrouvait de manière éparse, uniquement sur la partie Est (Ifremer, 2003 et 2004). Son développement envahissant en 2005 a peut-être été favorisé par les faibles densités phytoplanctoniques relevées au mois de juin.

Au total, 8 espèces d'algues ont été récoltées cette année dans l'étang. Outre *Chondria*, on retrouve encore les algues vertes opportunistes *Ulva rigida*, *Cladophora vagabunda*, *Monostroma grevillei*, *Enteromorpha intestinalis* et *Chaetomorpha aerea*. Les deux premières ne forment pas de réelles populations alors que les trois dernières forment de grandes marées vertes autour de l'embouchure du Salaison (zones 11 et 15), face à l'anse de la Capoulière (zones 32, 18) ou encore à l'Est où elles envahissent et étiolent les potamots. On retrouve aussi l'algue brune dérivante *Gracilaria verucosa* de manière très localisée à la station 24. Au niveau des algues climax, *Polysiphonia sertularioides* n'a pas été observée à la station 21 mais en revanche *Céramium tenerrimum* l'a été aux stations 24 et 9 de manière éparse. *Acrochaetium epiphytes* est toujours absente depuis 2001.

Diagnostic 2005

En 2005, malgré une diversité satisfaisante avec la présence de onze espèces de macrophytes dont trois espèces climax (*Ruppia cirrhosa, Zostera Noltii & Céramium tenerrimum*), l'état de l'étang de l'Or est classé médiocre (orange) par rapport aux macrophytes, en raison d'un recouvrement des espèces climax quasi-inexistant.

Tableau 94 : Diagnostic 2005 des macrophytes sur l'étang de l'Or.

Juin 2005	RV	RC	Nsp	NspC	NspD	NspO	NspE	Etat
	45	< 2	11	3	2	5	1	

 $RV = recouvrement \ v\'eg\'etal. \ Nsp = nombre \ d'esp\`eces. \ NspC = nombre \ d'esp\`eces \ climax.$ $NspD = nombre \ d'esp\`eces \ d\'erivantes. \ NspO = nombre \ d'esp\`eces \ opportunistes. \ NspE = nombre \ d'esp\`ece \ d'eau \ douce. \ Etat = Etat \ par \ rapport \ \grave{a} \ l'eutrophisation$

Etats antérieurs et évolution des macrophytes

L'évolution du nombre d'espèces inventoriées dans l'étang de l'Or depuis 1957 montre que le changement a été important entre 1977 et 1996. Depuis 1996, la situation est plutôt stabilisée avec toujours les deux mêmes phanérogames, *Ruppia cirrhosa* et *Potamogeton pectinatus* (auxquelles *Zostera Noltii* vient exceptionnellement se rajouter en 2005) et quelques espèces opportunistes et dérivantes, tantôt peu représentées laissant un étang pratiquement dépourvu de macro-algues, tantôt formant des populations éphémères sur de grandes surfaces, comme *Chondria* cette année. Parfois, quelques pieds isolés d'algues rouges, considérées comme climax arrivent à vivre fixées sur les cascails près de la lumière (*Acrochaetium, Ceramium, Polysiphonia*).

L'ensemble des diagnostics effectués depuis 1999 montre que la distribution de l'état des macrophytes a peu évolué dans l'étang de l'Or. Si le recouvrement végétal diminuait depuis 2002, la tendance s'est bien inversée cette année, ce qui indique qu'à la faveur de conditions climatiques et nutritives particulières, les macrophytes sont capables de se développer et de recoloniser l'étang. Cette année les densités phytoplanctoniques ont été relativement faibles en juin, ce qui a peut-être rendu possible ce développement tout à fait opportuniste et inattendu.

Tableau 95 : Evolution du nombre d'espèces de macrophytes dans l'étang de l'Or de 1957 à 2005 et de l'état des macrophytes depuis 1999. (* : Recouvrement des climax = recouvrement relatif par rapport au recouvrement végétal observé).

	Juillet 1957	Juillet 1977	Juillet 1996	Juillet 1999	Juillet 2000	Août 2001	Sept. 2002	Août 2003	Sept. 2004	Juin 2005
Espèces macroalgues	19	21	8	5	3	10	7	9	6	8
Espèces Phanérogames	4	3	2	1	1	2	2	2	2	3
Nombre d'espèces total	23	24	10	6	4	12	9	11	8	11
Recouvrement des climax*						<2	<2	<2	<2	<2
Etat										

7.8.8. Etang de Vaccarès

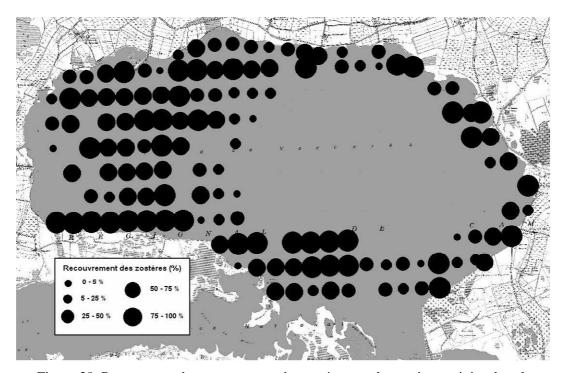


Figure 38. Pourcentage de recouvrement des zostères sur les stations suivies dans le Vaccarès en 2003 (carte réalisée par la SNPN Réserve Nationale de Camargue).

7.8.9. Etang de Berre

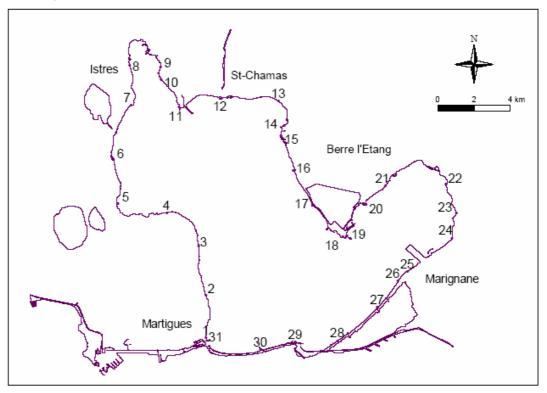


Figure 39 : Localisation des transects permanents suivis par le GIPREB sur l'étang de Berre (Bernard *et al.*, 2004).

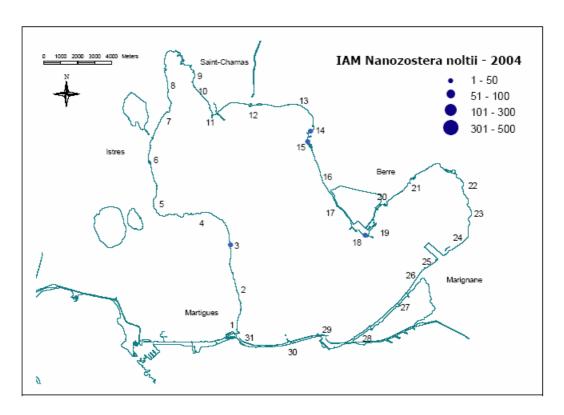


Figure 40 : Représentation cartographique des abondances de Z. noltii sur le pourtour de l'étang de Berre et Vaïne en juin 2004 (Bernard et al., 2004).

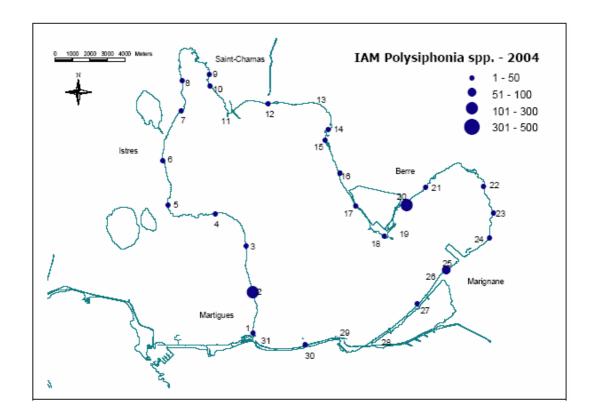


Figure 41 :Représentation cartographique des abondances de *Polysiphonia spp.* sur le pourtour de l'étang de Berre et Vaïne en juin 2004 (Bernard *et al.*, 2004).

7.9. BENTHOS

7.9.1. Localisation des sites en eaux côtières

Tableau 96 . Localisation GPS et bathymétrie des 26 sites et masse d'eau correspondante.

~ .		Latitude	Longitude	Profondeur	Date
Code	Nom du site	(WGS 84)	(WGS 84)	(m)	d'intervention
FRDC01	Cerbère	42° 26,728' N	3° 10,346′ E	28	20/03/06
FRDC01	Banyuls	42° 29,29' N	3° 8,529' E	23	20/03/06
FRDC01	Collioure	42° 31,907' N	3° 5,361' E	22	20/03/06
FRDC02a	Leucate	42° 51,111'N	3° 3,969' E	22	20/03/06
FRDC02a	Gruissan	43° 9,198' N	3° 12,271' E	22	21/03/06
FRDC02c	Agde W	43° 14,412' N	3° 28,301' E	18	21/03/06
FRDC02c	Agde E	43° 16,367' N	3° 32,315′ E	20	21/03/06
FRDC03	Espiguette	43° 26,121' N	4° 12,312' E	18,5	23/03/06
FRDC03	Beauduc	43° 24,827' N	4° 30,158' E	15	23/03/06
FRDC03	Faraman	43° 20,013' N	4° 43,197' E	10	23/03/06
FRDC04	Fos	43° 21,647' N	4° 55,747' E	20	23/03/06
FRDC04	Carteau	43° 23,133' N	4° 53,7' E	10	23/03/06
FRDC05	Carry	43° 19,285' N	5° 10,696' E	30	24/03/06
FRDC06b	Frioul	43° 15,375' N	5° 20,69' E	25	24/03/06
FRDC07a	Ile Marie	43° 12,495' N	5° 20,9' E	26	24/03/06
FRDC07a	Ile Jarre	43° 11,755' N	5° 22,795' E	26	24/03/06
FRDC07b	Cassis	43° 12,283' N	5° 32,236′ E	20	24/03/06
FRDC07e	Ile Embiez	43° 6,109' N	5° 46,813' E	30	25/03/06
FRDC07g	Toulon	43° 5,791' N	5° 56,837' E	25	25/03/06
FRDC07h	Ile du Levant	43° 0,424' N	6° 25,675' E	35	25/03/06
FRDC07h	Porquerolles	43° 2,47' N	6° 13,196' E	29	27/03/06
FRDC07h	Lavandou	43° 4,497' N	6° 20,518' E	35	27/03/06
FRDC08d	St Raphael	43° 25,413' N	6° 52,002' E	25	26/03/06
FRDC09a	Antibes S	43° 33,572' N	7° 8,385' E	23	26/03/06
FRDC09b	Antibes N	43° 35,651' N	7° 8,119' E	23	26/03/06
FRDC09b	Nice	43° 40,85' N	7° 14,204' E	20	26/03/06

7.9.2. Analyse des sédiments en eaux côtières

Figure 42 : Représentation graphique de la granulométrie des sédiments (Creocean, 2007)

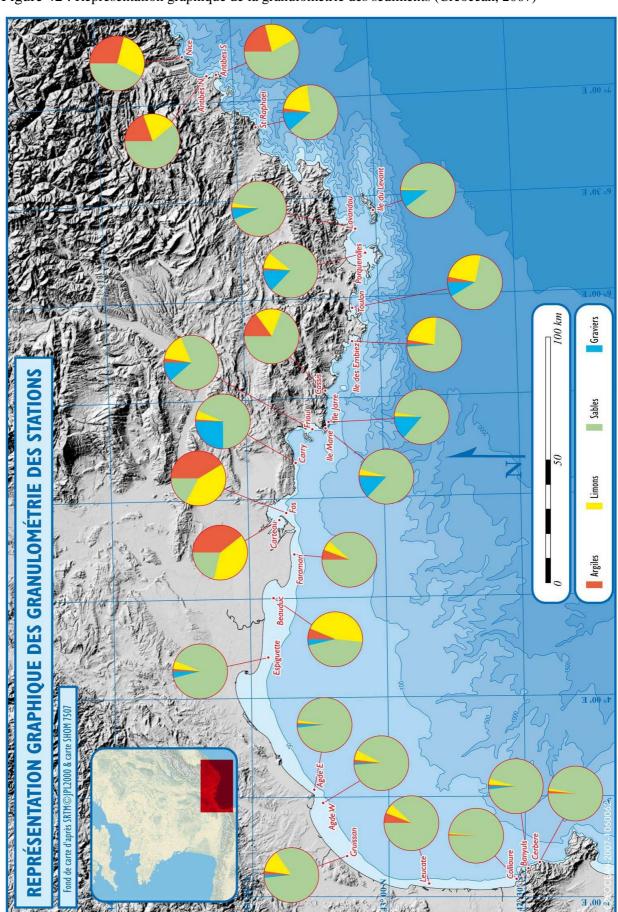


Figure 43 : Représentation graphique des valeurs de COT dans les sédiments – Eaux côtières (Creocean, 2007)

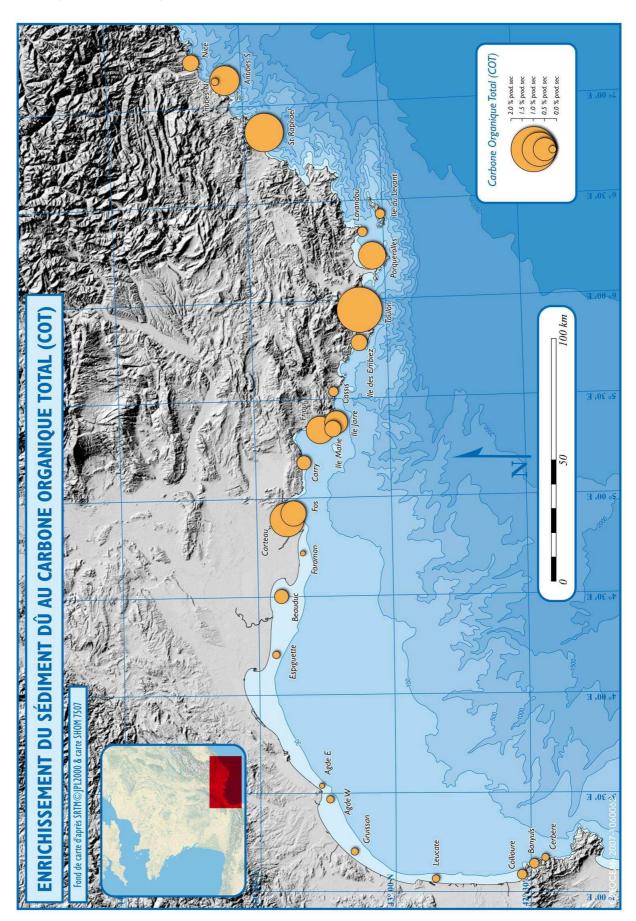


Figure 44 : Représentation graphique des valeurs d'Azote dans les sédiments. - Eaux côtières (Creocean, 2007)

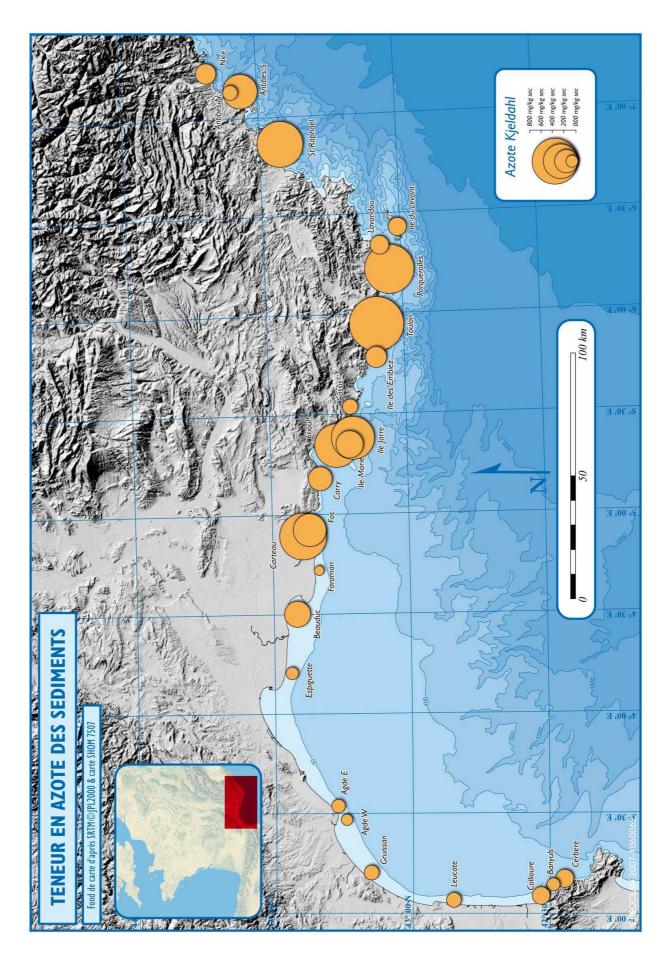
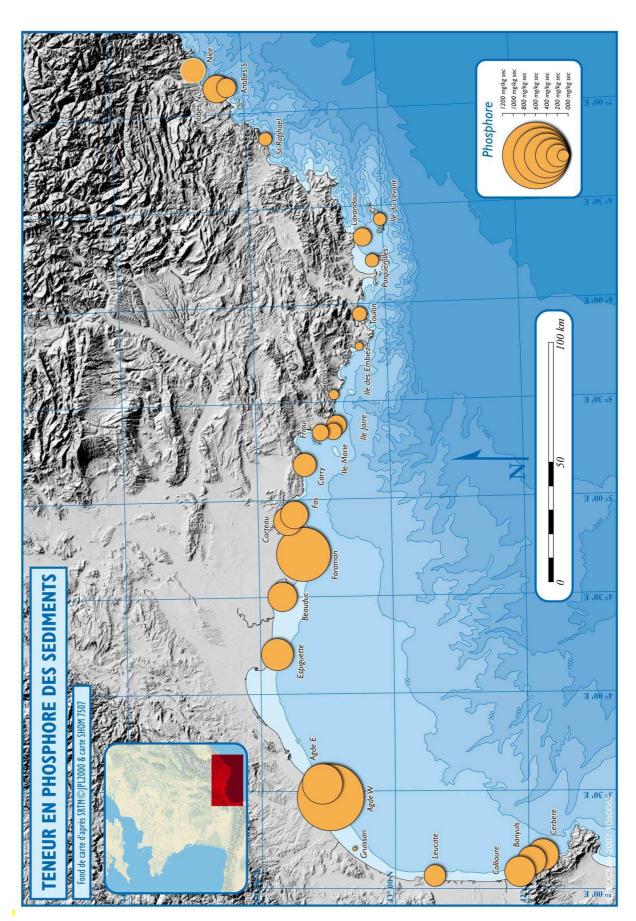



Figure 45 : Représentation graphique des valeurs de Phosphores dans les sédiments – Eaux côtières (Creocean, 2007)

7.9.3. Description Indices biologiques pour le benthos

L'indice de Shannon-Weaver (H')

L'indice de Sahnnon-Weaver (Shannon, 1948) est un indice de diversité qui prend en compte à la fois la richesse spécifique et l'abondance relative de chaque espèce, permettant de caractériser l'équilibre écologique du peuplement d'un écosystème.

$$H' = -\sum \left[\frac{N_i}{N} \times \log 2 \frac{N_i}{N} \right]$$

N_i : abondance de l'espèceN : abondance totale de l'espèce

Cet indice est maximale (H' max) quand les espèces ont des abondances identiques et il tend vers 0 quand une espèce domine le peuplement. Ce résultat est plus parlant accompagné de l'indice d'équitabilité (J).

L'indice de Shannon-Weaver (Shannon, 1948) est un indice de diversité qui prend en compte la richesse spécifique et l'abondance relative de chaque espèce. H' permet de caractériser la structure du peuplement.

Pour l'indice de Shannon, les classes de qualité sont représentées dans le tableau suivant :

Tableau 97 : Grille de lecture de l'indice de Shannon

H'	H' > 4	$3 < H' \le 4$	$2 < H' \le 3$	$1 < H' \le 2$	H' < 1
Code	Très bon	Bon	Moyen	Pauvre	Mauvais
couleur	(Bleu)	(Vert)	(Jaune)	(Orange)	(Rouge)

Dans les alinéas suivants, le fonctionnement de la formule est expliqué plus en détail :

L'abondance relative par rapport au total d'une espèce i (Ni / N) va de juste au-dessus de 0 pour les espèces qui ne sont représentées que par 1 seul individu, jusqu'à 1 pour un peuplement consistant d'une seule espèce (Ni = N).

Le résultat de la fonction log2(Ni/N) est négatif quand Ni < N et tend vers 0 quand une espèce domine. log2(Ni/N) = 0 quand Ni = N, donc quand le peuplement ne consiste qu'en une seule espèce.

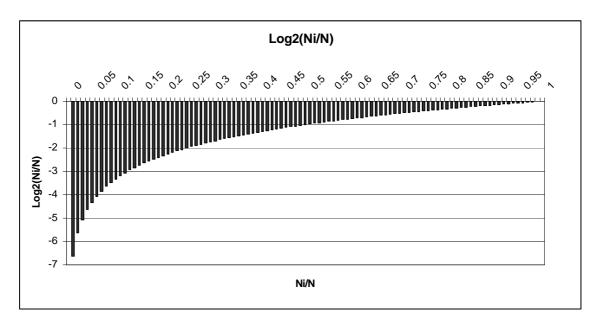


Figure 46 : log 2(Ni/N) - f(Ni = N)

Donc plus une espèce est dominante, plus Ni/N tend vers 1et plus log2(Ni/N) tend vers 0. De ce fait, la fonction (Ni/N) * log2(Ni/N) se comporte de la façon suivante:

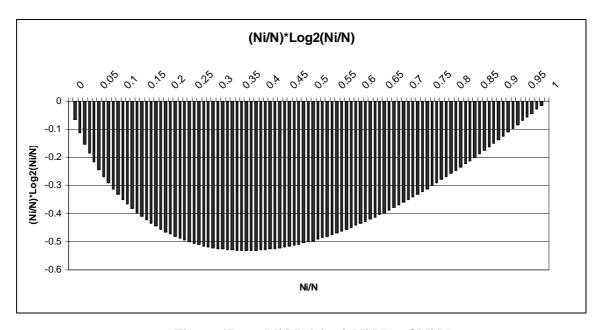


Figure 47 : - (Ni/N) * log2(Ni/N) = f(Ni/N)

Pour le calcul de l'indice de Shannon, le négatif de la somme des Ni/N * $\log 2(Ni/N)$ de chaque espèce du peuplement est retenu: - $\sum [Ni / N * \log 2 (Ni / N)]$

Le précédent graphique montre que les espèces à dominance intermédiaire (Ni/N entre 0.1 et 0.60) ont un poids plus important que les espèces rares ou celles qui sont très dominantes.

H' sera le plus important dans des peuplements à richesse spécifique élevé avec une répartition équitable des espèces. Les valeurs les plus basses apparaissent pour les peuplements qui sont dominés par une seule espèce ou par un petit nombre d'espèces. La richesse spécifique n'a, par rapport à la répartition des abondances, qu'une influence secondaire sur le résultat.

L'indice d'équitabilité (J)

Cet indice permet de mieux appréhender les résultats de Shannon. Il indique, sous forme de pourcentage, le rapport de l'indice trouvé précédemment (H') et l'indice maximal théorique de peuplement (H'_{max}).

$$J = \underline{H'} \quad x \ 100 \\ \log_2 S$$

H': indice de Shannon S: richesse spécifique

De la même manière, J=0% représente la dominance du peuplement par une seule espèce et J=100%, un peuplement composé d'espèces à l'abondance identique.

L'indice trophique (IT)

Le calcul de cet indice, mis au point par CREOCEAN et basé sur l'importance des différents groupes trophiques, permet, à partir d'une valeur variant entre 0 et 100, d'évaluer la qualité des communautés marines benthiques. Les différentes espèces sont classées en fonction des différents groupes trophiques existants :

Groupe1 – les détritivores microphages suspensivores

Groupe 2 – les détritivores microphages de surface

Groupe 3 – les déposivores macrophages

Groupe 4 – Les espèces caractéristiques des milieux anaérobies

Les calculs sont effectués en tenant compte du degré d'association de l'espèce avec le sédiment en fonction de sa stratégie trophique et du degré de pollution organique du milieu, selon la formule ci-dessous :

$$IT (\%) = 100-[33,33 \sum_{i=1}^{n} {(0n1+1n2+2n3+3n4)/(n1+n2+n3+n4)}]$$

n1 : abondance de toutes les espèces du groupe trophique 1

N : abondance totale des espèces

La répartition des espèces selon leur mode trophique (suspensivores, détritivores, déposivores) dépend de la forme sous laquelle la ressource nutritive est disponible.

Dans un milieu marin riche en matière organique mais non perturbé, l'équilibre entre

ces 3 espèces est à peu près le suivant : 60% dépositivores

> 30% détritivores 10% suspensivores

Les valeurs de l'indice sont exprimées en pourcentage, elles varient de 0 à 100 et sont interprétées de la manière suivante :

IT > 60 : le peuplement est normal : il n'est pas affecté par l'enrichissement en matière organique du sédiment

30 < IT < 60: le peuplement est déséquilibré: il est légèrement perturbé par l'enrichissement en matière organique du sédiment

IT < 30 : le peuplement est perturbé : il est affecté par la dégradation du sédiment due à un sur-enrichissement en matière organique

Les valeurs seuils attribuées à l'indice trophique pour le calcul des EcoQ sont basées arbitrairement sur ces valeurs.

L'indice biotique (AMBI)

Cet indice repose sur les proportions d'abondance que représentent 5 groupes écologiques correspondant au classement des espèces en fonction de leur sensibilité / tolérance face à un gradient de stress environnemental (Borja et al. 2000).

L'indice calculé permet de qualifier le milieu sur une échelle de 0 à 7 en allant d'un milieu normal (aucune pollution) à un milieu azoïque (très forte pollution) en passant par des degrés de dégradation progressifs. L'AMBI est donc un indicateur d'une perturbation organique du milieu.

L'indice M-AMBI

Le M-AMBI et l'AMBI (Borja et al., 2000) permettent de déterminer l'état écologique d'un peuplement.

L'AMBI est basé sur la polluosensibilité des espèces qui sont reparties dans 5 groupes écologiques selon leur sensibilité:

Groupe I: espèces sensibles Groupe II: espèces indifférentes Groupe III: espèces tolérantes

Groupe IV: opportunistes de second ordre Groupe V: opportunistes de premier ordre

AMBI = [(0 * %GI) + (1.5 * %GII) + (3 * %GIII) + (4.5 * %GIV) + (6 * %GV)] / 100

%GI, %GII, %GIV, %GV = fraction des espèces de Groupe I, II, III, IV, V dans le peuplement.

La valeur de l'AMBI est comprise entre 0 et 6 : si l'AMBI est faible cela traduit une bonne santé écologique, s'il est fort l'état de santé est mauvais.

Une communication de AZTI Marine, publié dans le Marine Pollution Bulletin (AZTI, 2005) donne des recommandations pour utilisation de l'AMBI et précise que dans les situations où peu de d'espèces sont présentes, dans des systèmes à faible salinité ou ayant un état perturbé naturel, l'outil risque d'être moins robuste. Dans des milieux lagunaires, les résultats de l'AMBI doivent donc être interprétés avec attention et toujours en combinaison avec d'autres informations.

Le M-AMBI permet faire un tel croisement de données car cet indice est dérivé par analyse factorielle de l'AMBI (Azti Marine Biotic Index), de la richesse spécifique et de l'indice de diversité H' (indice de Shannon-Weaver).

Afin de calculer le AMBI et, dans un deuxième temps, le M-AMBI, nous avons utilisé l'outil disponible gratuitement sur le site web de AZTI Marine:

http://www.azti.es/muestracontenido.asp?idcontenido=615&content=15&nodo1=30&nodo2=0

Etant donné que l'AMBI et les limites de ses classes de qualité n'ont pas été développés pour le milieu lagunaire, il a été décidé d'attribuer la valeur maximale observée à la qualité écologique minimale et la valeur minimale observée à la qualité écologique maximale. Nous rappelons qu'un AMBI faible signifie une bonne santé écologique, une valeur AMBI élevée indique un mauvais état de santé.

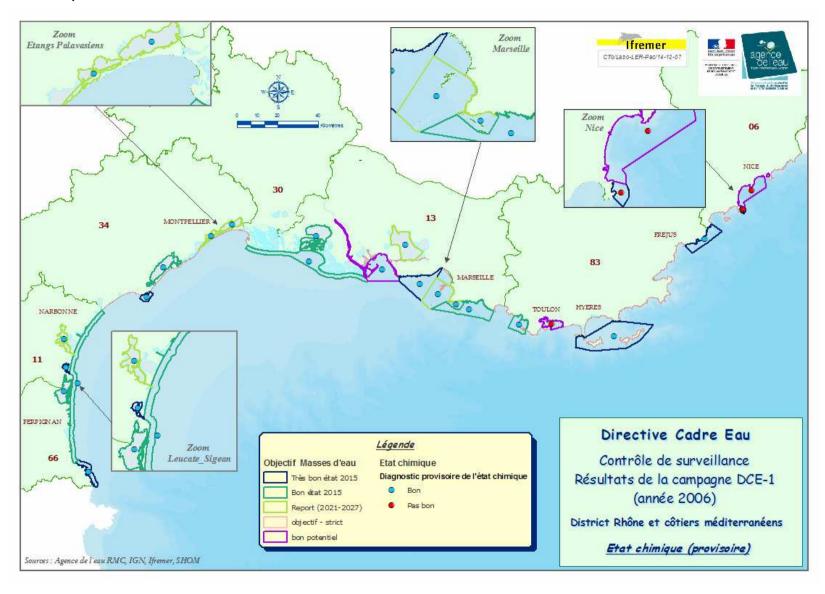
La même chose a été faite pour l'indice de Shannon et pour la richesse spécifique : la valeur maximale observée a été retenue, H'=0 et S=0 ont été retenus en tant que minima.

Qualité écologique	АМВІ	H' (Indice de Shannon)	S (richesse spécifique)
Minimale (mauvais état)	Valeur maximale observée	0	0
Maximale (très bon état)	Valeur minimale observée	Valeur maximale observée	Valeur maximale observée

Tableau 98 : Valeurs de référence retenues pour le calcul du M-AMBI

Pour finir, afin de mieux cerner l'état des peuplements, les espèces dominantes, les éventuelles proliférations et la présence d'espèces indicatrices ont été examinées.

7.9.4. Résultats Eaux de Transition


Tableau 99 : tableau récapitulatif M-AMBI, en fonction de l'indice AMBI, Shannon H', le richesse spécifique S

Stations	AMBI	H'	S	Х	Υ	Z	M-AMBI	Qualité écologique
Minimum	3,525	0	0	3,3588	2,0536	-1,7291	0	Mauvais
Maximum	0,58	4,56	50	-3,9781	-3,2551	2,4771	1	Très Bon

Leucate Sud	2,497	3,92	33	-1,9832	-0,66187	1,0801	0,65619	Bon
Leucate Nord	2,125	4,56	48	-3,4614	-1,5475	2,0923	0,85482	Très Bon
Lapalme Sud	1,823	2,62	20	-0,35713	-0,80497	0,22	0,50787	Moyen
Lapalme Nord	2,998	2,23	17	0,43691	0,61207	-0,23673	0,35472	Moyen
Bagnas	2,453	1,78	9	1,1201	0,30851	-0,66677	0,30247	Pauvre
Thau Est	1,294	3,7	28	-1,83	-1,7921	0,97933	0,70084	Bon
Thau Ouest	0,58	2,36	16	-0,23946	-1,9927	0,17154	0,56041	Bon
Pisse Saume	1,981	3,7	31	-1,824	-1,1229	1,0174	0,66638	Bon
Arnel	3,011	0,68	3	2,5016	1,2848	-1,3281	0,12093	Mauvais
Prévost Ouest	3,525	3,21	19	-0,3352	0,92106	-0,011268	0,4046	Moyen
Prévost Est	2,418	3,2	16	-0,44227	-0,19756	0,023845	0,47352	Moyen
Méjean Est	3,204	1,69	17	0,92799	0,95002	-0,39076	0,29409	Pauvre
Méjean Ouest	3,392	1,67	8	1,5109	1,3651	-0,91288	0,20707	Pauvre
Grec	3,166	1,35	12	1,4813	1,0984	-0,72657	0,23131	Pauvre
Vaccarès	2,864	1,25	12	1,4838	0,79519	-0,69406	0,24864	Pauvre
Berre Sud	3,251	2,75	15	0,19642	0,81833	-0,27696	0,35974	Moyen
Berre Nord	2,974	1,52	10	1,4087	0,9016	-0,76283	0,2456	Pauvre

7.10. CARTOGRAPHIE

7.10.1. Descripteur CHIMIE

7.10.2. Descripteur PHYTOPLANCTON

7.10.3. Descripteur POSIDONIE

7.10.4. Descripteur MACROPHYTES

7.10.5. Descripteur BENTHOS

Glossaire

Agence RM&C Agence de l'eau Rhône Méditerranée et Corse

ADENA Association de Défense de l'Environnement et de la Nature des pays d'Agde

BCF Facteur de bio-concentration

BOE **Biological Quality Elements**

CEMAGREF Institut de recherche pour l'ingénierie de l'agriculture et de l'environnement

CMF Cytométrie en flux

COEL Cellules Qualité des Eaux Littorales

CREOCEAN Société de Services et Conseil en Environnement marin et en Océanographie

DCE Directive Cadre Européenne

Direction Départementale de l'Equipement **DDE**

DIREN Direction Régionale de l'Environnement

DRASS et DDASS Administrations Sanitaires et Sociales de l'Etat

DYNECO Département Dynamiques de l'Environnement Côtier

Eaux Côtières EC

EQR Ecological Quality Ratio

ERMS European Register of Marines Species

 \mathbf{ET} Eaux de transition

Flore Partielle Indicatrice FPI

Flore Totale FT

Groupement d'Intérêt Public pour l'Etang de Berre **GIPREB**

GPS Global Positional System

IARE Institut des Aménagements Régionaux et de l'Environnement

Ifremer Institut Français de la Recherche pour l'Exploitation de la Mer

IGBL Indice biotique spécifique aux lagunes

INSU Institut National des Sciences de l'Univers

INTERREG Programme d'initiative communautaire du Fonds Européen Développement

IT Indice Trophique LER/ PAC et LR Laboratoire Environnement Ressources Ifremer de la région PACA

LER/LR Laboratoire Environnement Ressources Ifremer de la région LR

LR Languedoc-Roussillon

M-AMBI Multivariate AMBI

MDS Multidimensional Scaling

MEDAD Ministère de l'Ecologie, du Développement et de l'Aménagement Durable

MED-GIG Groupe d'Intercalibration Géographique Méditerranée

MEDOCC Méditerranée Occidentale (à associer au programme européen Interreg IIIB)

NABE Risque de Non Atteinte du Bon Etat en 2015

OEC Office environnement Corse

PACA Provence Alpes Cotes d'Azur

REMI de contrôle microbiologique des zones de production conchylicoles

REPHY Réseau de Surveillance du Phytoplancton et des Phytotoxines

RINBIO Réseau Intégrateurs Biologiques

RLC Réseau Lagunaire Corse

RLM Réseau Littoral Méditerranéen

RMC Rhône Méditerranée Corse

RNO Réseau National d'Observation de la qualité du milieu marin

RSL Réseau de Suivi Lagunaire (Languedoc-Roussillon)

RSP Réseau de Surveillance des Posidonies

SDAGE Schémas Directeurs d'Aménagement et de Gestion des Eaux

SDDE Schémas Directeurs des Données sur l'Eau

SEEE Système d'Evaluation de l'Etat de l'Eau

SOMLIT Service d'Observation en Milieu Littoral de l'INSU

STARESO Station de Recherches Sous-marines et Océanographiques

UMII Université de Montpellier 2

VIGIES Valorisation de l'Information pour la Gestion Intégrée et la Surveillance

Bibliographie

ADENA, 2003. Document d'objectif pour le site NATURA 2000 FR 910 1414 « Posidonies du Cap d'Agde » - Inventaire de l'existant et analyse écologique. Etude DIREN-LR, 300p.

Aminot & Kérouel, 2004. Hydrologie des écosystèmes marins- Paramètres et analyses. Editions Ifremer. 336pp.

Andral B., Derolez V., Orsoni V., Tomasino C., Mars 2006. Directive Cadre Eau-Propositions techniques pour la mise en œuvre du programme de contrôle de surveillance - Rapport Ifremer LER/PAC et LER/LR. Vol.1 District Rhône et côtiers Méditerranée 73pp. Vol.2. District Corse - 62 pp.

Bec B., 2005. Dynamique du picophytoplancton dans les lagunes méditerranéennes du Languedoc-Roussillon et de Corse. Thèse de doctorat de l'Université de Toulouse III, école doctorale d'écologie fonctionnelle. 207 p.

Belin C., G. Durand, A. Daniel, A. Pellouin-Grouhel. 2007. DCE: indicateurs phytoplancton, chlorophylle et hydrologie- simulations de classement des masses d'eau. Rapport Ifremer.158 pp.

Bellan-Santini D., Lacaze J.C., Poizat C., 1994. Les Biocénoses marines et littorales de Méditerranée-Synthèse, Menaces et Perspectives. Collection Patrimoines Naturels, Vol. 19, Série Patrimoine Ecologique, Muséum National d'Histoire Naturelle, Paris, 246pp.

Bernard G., Bonhomme P., Bravo JR, Boudouresque CF., 2004. Système de surveillance des principales espèces de macrophytes dans les étangs de Berre et de Vaïne: Suivi 2004. Contrat GIS Posidonie/GIPREB. GIS Posidonie publ., Marseille, Fr. : 1-47 + Annexes 1-2.

Borja A., Franco J. et Perez V., 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution bulletin 40, 1100-1114.

Borja A., Franco J., Valencia V., Bald J., Muxika I., Belzunce M.J. & Solaun O., **2004.** Implementation of the European Water Frame-work Directive from the Basque country (northern Spain): a methodological approach. Marine Pollution Bulletin 48(3-4), 209-218.

Boudouresque C.F., Ballesteros E., Ben Maiz N., Boisset F., Bouladier E., Cinelli F., Cirik S., Cormaci M., Jeudy de Grissac A., Laborel J., Lanfranco E., Lundberg B., Mayhoub H., Meinesz A., Panayotidis P., Semroud R., Sinnassamy J.M., Span A., Vuignier G., 1990. Livre rouge « Gérard Vuignier » des végétaux, peuplement et

paysages marins menacés de Méditerranée. UNEP/IUCN/Gis Posidonie. MAP Technical Report Series, n°43. UNEP, Athens: 1-150

Boudouresque C.F., Meinesz A., 1982. Découverte de l'herbier de Posidonie. Cahier Parc national de Port-Cros, Fr., *in* 4 : 1-79

Boudouresque C.F., Bernard G., Bonhomme P., Charbonnel E., Diviacco G., Meinesz A., Pergent G., Pergent-Martini C., Ruitton S., Tunesi L., 2006. Préservation et conservation des herbiers à *Posidonia oceanica*. Ramoge pub. : p.1-202. disponible sur www.ramoge.org/ramogefr/docs_biodiversite.php3.

Cadiou G., Charbonnel E., Boudouresque C.F., Meinesz A., Bonhomme P., Bernard G., Cottalorda J.M., Garcia F., Kruczek R., Bertrandy M.C., Foret P., Bricout P., Marro C., 2004. Le Réseau de Surveillance Posidonies de la Région Provence-Alpes-Côte d'Azur: résultats du suivi 2003. Région PACA/GIS Posidonie/SM13/DDE83/CG06. GIS Posidonie publ., Marseille, Fr.: 1-146.

Casabianca M-L. de, A.Kiener & H. Huvé, 1972-73. Biotopes et biocénoses des étangs saumâtres corses : Biguglia, Diana, Urbino, Palo – Vie Milieu. Vol XXIII, fasc.2, sér.C, pp.187-227.

Casagrande L., 2007. Méthodes d'optimisation de la stratégie spatiale d'échantillonnage pour les suivis benthiques en lagune dans la cadre de la DCE. Application à deux lagunes : Leucate et Thau. Rapport de Master 1 BGAE – spécialité Biostatistiques, Université de Montpellier II. 36 p.

Casas S., 2005. Modélisation de la bioaccumulation de métaux traces (Hg, Cd, Pb, Cu et Zn) chez la moule, *Mytilus galloprovincialis*, en milieu méditerranéen, Thèse de doctorat. Université du Sud-Toulon-Var (France): 314 pp. http://www.ifremer.fr/docelec/notice/2005/notice356.htm

Casas S. et Bacher C., 2006. Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, *Mytilus galloprovincialis*, applied to environmental monitoring. Journal of Sea Research 56: 168-181.

Caye G., 1980. Analyse du polymorphisme caulinaire chez Posidonia oceanica (L.) Del. (2). Bull. Soc. Bot., Lett. Bot, 127(3): 257-262.

Charbonnel E., Boudouresque C.F., Meinesz A., Cadiou G., Bonhomme P., Bernard G., Cottalorda J.M., Patrone J., Kruczek R., Bertrandy M.C., Foret P., Bricout P., Marro C., Le Direac'h L., 2003. Le Réseau de Surveillance Posidonies de la Région Provence-Alpes-Côte d'Azur: résultats du suivi 2002. Région PACA/Agence de l'Eau RMC/GIS Posidonie/SM13/DDE83/CG06. GIS Posidonie publ., Marseille, Fr.: 1-176.

Circulaire ministérielle DCE 2007/20. 2007. Document de cadrage pour la constitution et la mise en œuvre du programme de surveillance (contrôle de surveillance, contrôles opérationnels, contrôles d'enquête et contrôles additionnels) pour les eaux littorales (eaux côtières et eaux de transition).

Commission Européenne, 2003. Technical guidance Document (TGD) on risk assessment of chemical substances following European regulations and directives. 2nd edition Ispra (Italy): European Chemicals Bureau (ECB); JRC-Ispra (VA). http://ecb.jrc.it/tgdoc.

CREOCEAN, 2007. Contrôle de surveillance de la DCE. Analyse des stations de suivi des eaux côtières. Campagne 2006. Rapport Creocean. 75pp. + annexes.

CREOCEAN, 2007. Contrôle de surveillance de la DCE. Analyse des stations de suivi des lagunes. Campagne 2006. Rapport Creocean. 45 pp + annexes

Dauer D.M., 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Marine pollution Bulletin 26 (5), 249-257

Dave Jowett, 2007. Intercalibration report-Coastal GIGs

Delgado O., Grau A., Pou S., Riera F., Massuti C., Kabala M., Ballesteros E., 1997. Seagrass regression caused by fish farming cultures in Fornells Bay (Menorca, Western Mediterranean). Oceanologica Acta, 20(3): 557-563

Delgado O., Ruiz J.M., Pérez M., Romero J., Ballesteros E., 1999. Effects of fish famrling on seagrass (Posidonia oceanica) beds in a Mediterranean bay: seagrass decline after organic matter cessation. Oceanologica Acta, 22(1): 109-117

Derolez V., 2007. Proposition d'optimisation de la stratégie spatiale de suivi des macrophytes et des sédiments en lagunes. Application à Thau, Bages, Leucate, Vic et Or. Ifremer. 38 p.

Derolez V., T. Laugier et Bouchoucha M. 2007. Mise en œuvre du contrôle de surveillance DCE. Proposition d'un indicateur d'abondance pour le phytoplancton dans les eaux de transition lagunaires. Abondances phytoplanctoniques obtenues par cytométrie en flux. Rapport Ifremer. 16 pp.

Durand G., Belin C., Pellouin-Grouhel A., Grossel H., Daniel A., 2007. DCE: indicateurs phytoplancton, chlorophylle et hydrologie. Version provisoire. 55 p.

Ferrari B., 2006. Etude synécologique de *Posidonia oceanica* et de *Sarpa salpa* le long de la côte des Albères (Pyrénées orientales, France); influence d'une aire marine protégée. Thèse de Doctorat EPHE, Université de Perpignan : 289 pages + annexes 26p.

Giraud G., 1977. Contribution à la description et à la phénologie quantitative des herbiers à Posidonia oceanica (L.) Delile. Thèse Doctorat 3ème cycle, Université Aix-Marseille II, France: 1-150

Giraud G., 1979. Sur une méthode de mesure et de comptage des structures foliaires de Posidonia oceanica (Linnaeus) Delile. Bull. Mus. Hist. Nat. Marseille, 39: 33-39

Gnassia-Barelli M., Romeo M., Delpine R., Puel D., 1991. Trace metal concentrations in benthic algae from French Mediterranean and atlantic coast. In Marine phytobenthos studies and their applications, International Journal Marine Biology Oceanography, Instituto Sperimentale Talassografico !A Cerruti publ. 17(1): 245-251

Grall J. & M. Glemarec, 1997. Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuarine, Coastal and Shelf Science 44 (suppl.A), 43-53

Gravez V., Bernard G., Bonhomme P., Cadiou G., Coquillard Y., Divetain N., 1999. Surveillance de l'herbier de Posidonie de la baie du Prado (Marseille). Suivi 1999. Ville de Marseille, Direction de l'Environnement et des Déchets & GIS Posidonie publ., Marseille : 1-45p. + annexes.

Guillaumot B. & Gautier E., 2005 – Recommandation pour un programme de surveillance adapté aux objectifs de la DCE – IFREMER –DYNECO / VIGIES 2005-0511

Hotelling H., 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 417-441: 498-520

IARE, 1996 - Diagnostic hydrologique et hydrobiologique de l'étang de Palo Ifremer, 2005. Réseau de Suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2004. Rapport RSL-05/2005, 434 p.

Ifremer, 2006. Mise en œuvre du contrôle de surveillance DCE. Propositions techniques. District Corse. 62pp.

Ifremer, 2006. Réseau de Suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2005. Rapport RSL-06/2006, 434 p.

Ifremer, 2006. Mise en œuvre du contrôle de surveillance DCE. Propositions techniques. District Rhône et Côtiers Méditerranéen. 73pp.

Ifremer, 2006. Bulletin RNO 2006. Surveillance du Milieu Marin. 53pp. http://www.ifremer.fr/envlit/pdf/rnopdf/rno06.pdf

Ifremer, 2007. Optimisation de la surveillance des masses d'eau DCE en Méditerranée. Utilisation de produits dérivés d'images satellites en complément du réseau de mesures *in situ*. Convention Ifremer/ AERM&C n°2006-1899. 60pp.

Ifremer, Créocean, UMII, 2000. Mise à jour d'indicateurs du niveau d'eutrophisation des milieux lagunaires méditerranéens. Laboratoire Ifremer DEL/ST. Direction de l'Environnement et de l'Aménagement du Littoral. 412pp. Annexes 2 et 3.

Kantin R., B. Andral, S. Debard, J. Denis, V. Derolez, E. Emery, N. Ganzin, G. Hervé, T. Laugier, M. Le Borgne, D. L'Hostis, J. Oheix, V. Orsoni, S. Raoult, S. Sartoretto, C. Tomasino, 2006. Le Référentiel Benthique Méditerranéen (REBENT

MED). Avant Projet Sommaire Ifremer R.INT.DOP/LER-PAC/06-08. 124 pp. + annexes.

Kantin R., Pergent-Martini C., 2007. Monitorage de la qualité des eaux et de l'environnement marin - Rapport final - Région Corse. Programme INTERREG IIIA Sardaigne / Corse/ Toscane, MONIQUA. N°MCD IIIA-03/08, Convention Ifremer PAC - Equipe Ecosystèmes Littoraux & Collectivités. Territoriale de Corse MCD IIIA-03/08, Ifremer publ., La Seyne: 1-222.

Labrune C., Amouroux J.M., Dutrieux E., Thorin S., Rosenberg R. & A. Gremare, 2006. Characterisation of the ecological quality of the coastal Gulf of Lions (NW Metditerranean). A comparative approach based on three biotic indices. Marine Pollution Bulletin 52, 34-47.

Marchand M., Tissier C, 2006. Analyse du risque chimique en milieu marin. L'approche méthodologique européenne. Brest Ifremer. Edition 2006

Mayot N., 2007. Changements à long terme des limites inférieures de *Posidonia oceanica* en Provence et Côte d'Azur. Thèse de Doctorat, Université de la Méditerranée, 140p.

MED-GIG, 2005. Technical Report, Section 5: Angiosperms. p.1-9.

Meinesz A., Javel F., Longepierre S., Vaugelas J. de, Garcia D.. 2006. Inventaire des aménagements gagnés sur le domaine marin - côtes méditerranéennes françaises. Université de Nice Sophia-Antipolis. Publication électronique : www.medam.org.

Meinesz A., Laurent R., 1978. Cartographie et état de la limite inférieure de l'herbier de Posidonia oceanica dans les Alpes-Maritimes (France). Campagne Poséidon 1976. Botanica marina, 21(8): 513-526.

Muxika I., Borja A. & J. Bald, 2007. Using historical data, expert judgement and multivrariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55, 16-29.

Orsoni V., 2004. Réseau Lagunaire Corse. Diagnostic complet des étangs de Biguglia, Diana et Urbino. 114pp.

Panayotidis P., Boudouresque C.F., Marcot-Coqueugniot J., 1981. Microstructure de l'herbier de Posidonia oceanica (Linnaeus) Delile. Botanica marina, 24(3): 115-124.

Pasqualini V., 1997. Caractérisation des peuplements et types de fonds e long du littoral corse (Méditerranée, France). Thèse de Doctorat « Ecologie Marine », Univ. Corse, France: 1-165.

Pearson T. H, Josefson A.B. & R. Rosenberg. 1985. Petersen's benthic stations revisited. I. Is the Kattegat becoming eutrophic? Journal of Experimental Marine Biology and Ecology 92, 157-206.

Pearson T. & R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Rewiew 16, 229-311.

Pelaprat C., Agreil M., Chery A., Pete D., Michele L. & Lejeune P., 2007. Mise en œuvre du contrôle de surveillance au titre de la directive cadre eau pour l'indicateur benthos de substrat meuble dans le district Corse (Eaux côtières) - Contrat STARESO / IFREMER. 29p.

Pelaprat C., Agreil M., Chery A., Pete D., Michele L. & Lejeune P., 2007. Mise en œuvre du contrôle de surveillance au titre de la directive cadre eau pour l'indicateur benthos de substrat meuble dans le district Corse (Eaux de transition)- Contrat STARESO / IFREMER. 25p.

Pergent G., Clabaut P., Mimault B., Pasqualini V., Pergent-Martini C., 2005. Mise en œuvre d'un Réseau de Surveillance Posidonie le long du littoral de la Corse. Deuxième phase: Porto-Vecchio/Ajaccio. Contrat Office de l'Environnement de la Corse et GIS Posidonie Centre de Corse, GIS Posidonie Publ., Corte: 1-133.

Pergent-Martini, 2006. Elément de qualité biologique : posidonie compte-rendu de l'exercice d'intercalibration. *Contrat IFREMER/Université de Corse-EqEL, Corté* : 1-27.

Pergent G., Pergent-Martini C., Boudouresque C.F., 1995. Utilisation de l'herbier à *Posidonia oceanica* comme indicateur biologique de la qualité du milieu littoral en Méditerranée : Etat des connaissances. Mésogée, 54 : 3-29.

Pergent-Martini C., Rico-Raimondino V., Pergent G., 1994. Primary production of *Posidonia oceanica* in the Mediterranean Basin. Mar. Biol., 120: 9-15.

Pergent-Martini C., Leoni V., Pasqualini V., Ardizzone G.D., Balestri E., Bedini R., Belluscio A., Belsher T., Borg J., Boudouresque C.F., Boumaza S., Bouquegneau J.M., Buia M.C., Calvo S., Cebrian J., Charbonnel E., Cinelli F., Cossu A., Di Maida G., Dural B., Francour P., Gobert S., Lepoint G., Meinesz A., Molenaar H., Mansour H.M., Panayotidis P., Peirano A., Pergent G., Piazzi L., Pirrota M., Relini G., Romero J., Sanchez-Lizaso J.L., Semroud R., Shembri P., Shili A., Tomasello A., Velimirov B., 2005. Descriptors of *Posidonia oceanica* meadows: use and application. Ecol. Indicators 5: 213-230.

Pergent G., Boudouresque C.F., Vadier B., 1985. Etude préliminaire des herbiers à *Posidonia oceanica* (L.) Delile de la côte des Albères (Pyrénées-Orientales, France). *Ann. Inst. Océanogr. Paris*, 61(2): 97-114.

Pergent-Martini C., Pergent G., 1989. Balisage de la limite inférieure de l'herbier de Posidonie. Réserve Naturelle de Cerbère/Banyuls-sur-mer : 13pp.

Programme Interreg IIIb Posidonia. 2007. Mise en cohérence, développement, harmonisation et validation de méthodes d'évaluation de la qualité du milieu littoral par le suivi de l'herbier à *Posidonia oceanica*. Rapport final. www.ifremer.fr/posidonia.

Programme MEDOC. 2007. Mise en cohérence, développement, harmonisation et validation de méthodes d'évaluation de la qualité du milieu littoral par le suivi de l'herbier de Posidonia oceanica. Corse & Catalunya. Rapport final.

Ramey P.A. & P.V.R. Snelgrove, 2003. Spatial patterns in sedimentary macrofaunal communities on the south coast of Newfoundland in relation to surface oceanography and sedimant characteristics. Marine Ecologie progress series 262, 215-277.

REBENT, 2005. Fiches techniques in Recommandations pour le contrôle de surveillance DCE. Disponible sur http://www.rebent.org/documents.

Romeo J., Martínez-Crego B., Alcoverro T., Pérez M., 2007. A multivariate index based on the seagrass Posidonia oceanica (POMI) to assess ecological status of coastal waters under the water framework directive (WFD). Marine Pollution Bulletin, 55: 196-204.

Rosenberg R. Gray J.S., Josefson A.B. & T.H. Pearson. 1987. Petersen's benthic stations revisited. II. Is the Oslofjord and eastern Skagerrak enriched? Journal of Experimental Marine Biology and Ecology 105, 219-251.

Simboura N. & A. Zenetos, 2002. Benthic indicators to use in ecological quality classification of Mediterranean soft-bottom marine ecosystems, including a new biotic index. Mediterranean Marine Sciences 3,77-111.

Snelgrove P.V.R. & C.A. Butman. 1994. Animal-sediment relationships revisited: cause versus effect. Oceanography and Marine Biology: an Annual Review 32, 111-177.

S.N.P.N., Réserve Nationale de Camargue, 2005. Compte rendu scientifique 2005, 103 p.

Soltan D., Francour P., 2000. Monitoring system of benthic macrophytes communities in Berre and Vaïne ponds: development of a new strategy. J.Rech. Oceanogr., Fr., 25 (3-4): 53-57.

Soullard M., Bourge I., Fogel J., Lardinois D., Mathieu T., Veeschens C., Bay D., Dauby P., Bouquegneau J.M., 1994. Evolution de la densité de l'herbier de Posidonies de la baie de Calvi (Corse). Vie et Milieu, 44 : 199-201.

Weisberg S.B., Ranasinghe J.A., Dauer D.M., Schaffner L.C., Diaz R.J. et J.B. Frithsen, 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries 20, 149-158.